
Page 1 of 30

TOCCATA : Text-Oriented Computational Classifier Applicable To Authorship
(User Notes by Richard Forsyth, April 2017)

Toccata is a system for testing text-classification techniques, written in Python3. Essentially the main
program is a test harness into which a variety of text-classification algorithms can be inserted for
evaluation on unproblematic cases and, if required, applied to disputed cases.

Why I Wrote this Software
In the 20+ years since I became interested in computational authorship attribution, I have
implemented several algorithms to perform text categorization (k-nearest-neighbour, linear
classifier, naive Bayes, tree-induction, among others) in a variety of programming languages,
including Basic, C, Python2, Python3, R and Spitbol (an implementation of Snobol4). This left me with
a motley collection of programs, most of which I can no longer execute due to lack of support
software, all of which have irritatingly different conventions about input formats and operational
parameters.

I realized that what I wanted was a generic framework into which I could plug alternative
classification techniques. That would allow me to evaluate the success of a possibly novel technique
on a common corpus of documents with undisputed class membership; and, if it appeared
promising, to apply it to unseen or genuinely problematic cases.

Toccata is the result. (The name stands for: Text-Oriented Computational Classifier Applicable To
Authorship.) I am making it available to all & sundry as freeware in the GNU sense of 'free' with the
hope that it will be useful to others, and possibly even lead to paid consultancy -- since software can
always be improved or extended and there might even be people prepared to pay me to do the
extending &/or improving. (:-)

As mentioned above, my main motive in writing toccata was to experiment with authorship-
attribution methods, but it can do many other kinds of document categorization as well, e.g.
classifying by topic or by genre.

The basic concept is that you write a classifier as a Python3 library and run it through the toccata
main program which tries it out on a test corpus or corpora and calculates a number of evaluation
measures, as well as classifying a holdout sample if present. Actually, you don't have to write your
own classifier, since 6 different (simple but quite effective) libraries are supplied so that those who
don't fancy writing Python code can still use the system for document classification. If you are happy
to write Python code, these serve as models which you can adapt for your own purposes.

A Sketch of the System's Operation

Phase Brief Outline

00. Collect text data. Can't say much about this except that it could take lots of work, and that
each document should be in a separate (utf8) file and should belong to a specific category.
Several example corpora are provided to get you started. (Incidentally, data gathering &
checking is the really crucial part: doing insufficient data validation is a trap into which
almost everyone has fallen at some time, including me.)

0a. Download Python (version 3 not 2), if you don't already have it, from www.python.org. This
is normally quite painless.

0b. Unpack the toccata.zip file -- into a top-level directory called toccata unless you want to do
lots of extra editing.

1a. Create a "metafile" for the training-set of documents. A program called metaget.py is
provided to help make this process (fairly) easy. More on metafiles below.

http://www.python.org/

Page 2 of 30

1b. Optional, but very likely: also create a metafile for a holdout sample of texts, including
some of uncertain category membership.

2. Either write your own bespoke text-classifier as a Python3 module, or (more likely at first)
decide which of the provided library modules, docalib_deltoid, docalib_keytoks,
docalib_maws, docalib_tokspans, docalib_topvocs or docalib_vote to use. More details
below.

3. Prepare a parameter file. This is a file that can be edited, e.g. in Notepad or Notepad++,
which specifies various settings. Examples of parameter files will be shown below.

4. Run toccata9.py. (The digit is a version number, so may change as time goes by.)
This performs three main functions, in sequence:
(a) testmode: leave-n-out random resampling test of the classifier on the training corpus to
provide statistics by which the classifier can be evaluated;
(b) holdout: application of the classifier to an unseen holdout sample of texts, if a test
metafile is given;
(c) posthoc: re-application to the holdout sample of texts (if one is given) using the results
from the testmode phase to estimate empirical probabilities.
More details below. Note that steps (b) & (c) are optional. Note also that step (c) is frankly
experimental thus needs to be treated with caution.

5. Peruse results with care, perhaps exporting the "_dump" file into R or another statistical
package for further processing.

Phase 00 : Corpus Format
Toccata is a document-oriented system. Thus a training corpus consists of a number of text files, in
UTF8 encoding (without markup, such as HTML tags). Each file is treated as an individual document,
belonging to a particular category.

In the samples folder you will find 6 subfolders (ajps, bottlabs, cics, feds, mags and sonnets). These
contain datasets that enable you to start using the system, prior to collecting &/or reformatting your
own corpora.

The first, ajps, contains ninety poems by 2 eminent 19th-century Hungarian poets, Arany József &
Petőfi Sándor. Arany was godfather to Petőfi's child, so we might expect their writing styles to be
relatively similar. Also, these poems are short compared to the lengths of documents that are
typically used in text classification, so represent a challenging problem.

The second, bottlabs, holds approximately 200 texts taken from the back labels of beer, wine and
soft drinks bottles. It certainly isn't an authorship problem, but it is a useful test case since the texts
themselves are relatively short. In addition to the three main categories -- beer, soft & wine -- there
is a misc subfolder with a miscellany of other short text files. Some of these are cider back label
texts, others from tea or coffee packaging, but some are not related to drinks at all and at least one
isn't in English. Thus this collection, when trained to distinguish three categories can be used to
assess how well Toccata deals with "distractors", i.e. texts that do not belong in any of the training
classes.

The cics subfolder contains writings by several Latin authors, the three main ones being: Marcus
Tullius Cicero, the famous Roman orator, Mark-Antoine Muret, known as Muretus, and Carlo
Sigonio. This dataset arises from an interesting authorship problem. Background information can be
found in Forsyth et al. (1999), but in a nutshell the problem revolves around a work called the
Consolatio which Cicero wrote in 45 BC. This was thought to have been lost until in 1583 AD when
Carlo Sigonio claimed to have rediscovered it. He died the following year never having made public
the manuscript, but published a printed version in Venice with himself named as editor. Scholars

Page 3 of 30

have argued since then over whether the book is genuinely a rediscovery of Cicero's lost work or a
renaissance fake. We will use this dataset as our main example to demonstrate how Toccata works.

The feds subfolder contains writings by Alexander Hamilton and James Madison, as well as some
contemporaries of theirs. This is related to another notable authorship dispute, concerning the
Federalist Papers, which were published in New York in 1788. Of the 85 essays in that book, 51 are
known to have been written by Hamilton, 14 by Madison, 5 by John Jay and 3 jointly by Hamilton
and Madison together. That left 12 disputed papers (numbers 49-58 and 62-63) claimed by both
Hamilton and Madison. For more background see Holmes & Forsyth (1995).

The mags subfolder contains data for a content-discrimination problem. It contains 144 texts from 2
different learned journals, namely Literary & Linguistic Computing and Machine Learning. Each text
is an excerpt consisting of the Abstract plus initial paragraph of an article in one of those journals,
written during the period 1987-1995. The classification task is to decide the journal in which the text
was published. Hence this is not an authorship problem, rather a problem of content discrimination.
Again the texts are relatively short compared to other examples in this field.

Lastly, the sonnets corpus contains 196 short English poems -- 14 sonnets by each of 14 different
authors. This is a challenging problem firstly because the median length of each text in the training
corpus is 116 words, secondly because 14 is a relatively large number of candidates. Hence the
probability of successful classification by chance is just over 7 percent. There is also a holdout
sample of 24 texts, absent from the training set. Half of these 24 items are 'distractors', i.e. texts by
authors not present in the training set; 21 of these holdout texts are sonnets, but 3 are not: Winter
My Secret, a poem of 239 words by Christina Rossetti; the short poem, They Flee from Me, by
Thomas Wyatt, and Lincoln's 1863 Gettysburg address, which is the only example not in verse.

Phase 0 : Setting Up
First you need Python3. If you don't have it already, the latest version can be downloaded and
installed from the Python website: www.python.org. This is usually quite straightforward. The only
snag is if you have Python2 and want to keep using it. Then you'll probably have to set up a specific
command to run whichever version you use less frequently.

Next step is to unpack the toccata.zip file. After unpacking it, preferably into a folder called
"toccata", you should find the following subfolders.

op
p3
parapath
previous
samples

The programs are in p3. Sample test corpora will be found in samples. Subfolder op is the default
location for output files and parapath is a convenient place for storing parameter files, which will be
explained later. Subfolder previous contains earlier versions of the software.

Phase 1 : Anything You Can Do, I Can Do Meta (;-)
Sorry, couldn't resist that.

Below is a complete listing of a training metafile for the cics dataset. It has three columns. A metafile
could have more columns than three, but not less. The top line is a header, giving the column names.
The first column must be called prepath. It indicates the directory/folder where a particular file

http://www.python.org/

Page 4 of 30

resides. The second must be called filename and will contain the file names of each particular text.
The other column will contain class labels. It can be called anything, though doctype is the default.
(See details of parameter files, in Phase 3, for alternative ways of indicating the class of a text.)
Columns are separated by the horizontal tab character. (Code point 9 in ASCII and Unicode/utf8.)
Each line after the header refers to a separate document.

prepath filename doctype

c:\toccata\samples\cics\Tullies\ Cicero_Amicitia.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ArchiaPoeta.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Atticus1.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Brutus1.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Brutus2.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Cat2.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_CatoSenectute.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_DeFinibus.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_DeImperio.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_DeInventione2_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_DeLegibus.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_DePartitione_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_InPisonem_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_InVerremII2_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_NaturaDeorum2.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Officiis1.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Orator.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Philippics2.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProCaecina_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProCluentio.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProFlacco_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProMarcello.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProMilone_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProQuinctio_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProSestio_latlib.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProSexto.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_ProSulla.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Rep2.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Somnium.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Tusculan1.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Tusculan2.txt cics

c:\toccata\samples\cics\neolats\ Muretus_PaulFox.txt muretus

c:\toccata\samples\cics\neolats\ Muretus_Phil.txt muretus

c:\toccata\samples\cics\neolats\ Muretus_Pius.txt muretus

c:\toccata\samples\cics\neolats\ Muretus_Rege.txt muretus

c:\toccata\samples\cics\neolats\ Muretus_Util.txt muretus

c:\toccata\samples\cics\neolats\ Sigonio_Elo1.txt sigonio

c:\toccata\samples\cics\neolats\ Sigonio_Elo2.txt sigonio

c:\toccata\samples\cics\neolats\ Sigonio_HistIt4a.txt sigonio

c:\toccata\samples\cics\neolats\ Sigonio_HistIt4b.txt sigonio

c:\toccata\samples\cics\neolats\ Sigonio_LatLing.txt sigonio

c:\toccata\samples\cics\neolats\ Sigonio_LaudHist.txt sigonio

This metafile describes a training corpus with 3 categories: 31 texts by Cicero, 5 texts by Muretus
and 6 texts by Sigonio. Many of these 42 texts are extracts rather than full works. Note that no
disputed texts are included in the training corpus. Note also that only 5 or 6 training examples is
much fewer than ideal, so it is optimistic to expect high accuracy in this case; however, in real
problems we are often forced to compromise. (The program cannot run with fewer than 2 instances
of each training category.)

There follows a complete listing of holdout3.txt, a testing metafile for this example. This does
include disputed texts.

prepath filename doctype

c:\toccata\samples\cics\claslats\ Seneca_Brevit.txt claslats

c:\toccata\samples\cics\claslats\ Seneca_Cons.txt claslats

Page 5 of 30

c:\toccata\samples\cics\claslats\ Seneca_Ira1.txt claslats

c:\toccata\samples\cics\claslats\ Seneca_Otio.txt claslats

c:\toccata\samples\cics\claslats\ Seneca_Prov.txt claslats

c:\toccata\samples\cics\neolats\ Abelard_HistCalamitatum_latlib.txt neolats

c:\toccata\samples\cics\neolats\ Heloise_Epistola_latlib.txt neolats

c:\toccata\samples\cics\neolats\ Lauredan_FranVen.txt neolats

c:\toccata\samples\cics\neolats\ Lauredan_Mant.txt neolats

c:\toccata\samples\cics\neolats\ Muretus_Ingress.txt muretus

c:\toccata\samples\cics\neolats\ Muretus_Laud.txt muretus

c:\toccata\samples\cics\neolats\ Sigonio_Dialogo.txt sigonio

c:\toccata\samples\cics\Tullies\ Cicero_Philippics7.txt cics

c:\toccata\samples\cics\Tullies\ Cicero_Tusculan4.txt cics

c:\toccata\samples\cics\holdout\ ConsolA.txt cons

c:\toccata\samples\cics\holdout\ ConsolB.txt cons

c:\toccata\samples\cics\holdout\ EpistulaOct.txt fake

c:\toccata\samples\cics\holdout\ RhetHerr.txt fake

The last four entries refer to the first and second halves of the 1583 Consolatio, as well as 2 classical
works, supposedly written by Cicero, which are nowadays taken to be spurious. Note that none of
these have a category label seen in the training metafile. There are also several classical and neolatin
"distractors" as well as one unseen text by Sigonio, 2 by Muretus and 2 by Cicero. As far as this
holdout sample is concerned, the classifier cannot get more than five of its responses correct.
However, it is interesting to observe how it handles the distractors.

The format of metafiles is intended to be suitable for manipulation in a spreadsheet package such as
Excel or OpenOffice/Calc as a tab-delimited worksheet. The idea behind this is to make it possible to
select a variety of subsets of a larger corpus as training or test texts in different runs of the system,
without moving files around &/or deleting them.

To make an initial metafile, it is convenient to use the metaget.py program, which is included with
the distribution. The output of this program can then be edited in a text-editor, such as Notepad++,
or a spreadsheet until it specifies exactly the desired set of files. Notepad++, a versatile text-editor
that I personally recommend, can be obtained from the website
http://notepad-plus-plus.org/
free of charge.

The metaget.py program can be run just by double-clicking on its name. It will then display a window
with four elements:

 Enter next category name:
 Select file(s):

Enter output metafile name:
 Exit & save metafile:

The idea is that you type a category label in the upper box (then click on the Enter button) then
choose files by picking the second option which will allow the customary ways of navigating the file
system and selecting files or groups of files. This pair of actions can be repeated several times to
include files from a number of different categories &/or different folders. Then you provide a
destination file name and extension for the resulting metafile (again not forgetting to click on the
Enter button) and quit using the final option. If you do forget to name the output metafile, it will be
called metazero.txt and placed on the directory from which the program was launched.

Note that entering the category or metafile name does require clicking the Enter button alongside
the text-entry box to confirm your input; just hitting Carriage-Return won't do, as I have yet to
master the intricacies of binding a keypress-response procedure to the Return key. (I still write

http://notepad-plus-plus.org/

Page 6 of 30

programs as if the 20th century hadn't gone out of fashion, I'm afraid. Nevertheless, I suspect most
people will find metaget.py somewhat simpler to use than its precursor minimet4.py, though I doubt
if it will eliminate cases where using a text-editor, such as Notepad++, will still be needed to put a
nearly-correct metafile into its final form.)

The test problems in the samples subfolder contain several metafiles that you can inspect as
examples before making your own.

There is also a program, randmets.py, which will take an input metafile and distribute entries at
random to produce two output metafiles each of which contains a disjoint subset of the input
metafile entries, randomly chosen. This is useful for producing training and test samples.

Phase 2 : Library Modules
Here we just consider the libraries provided with the system. For those dauntless spirits who enjoy
writing modules in Python3, Appendix 4 gives much fuller details of what a library should provide for
the toccata9.py program (essentially a class called Docadat which includes a number of required
methods that create and employ a list called modinfo of models for each category) and what data
structures the toccata9.py program makes readable to the methods in that class (essentially a list
called doclist, containing details of each text, and an object called paradat which holds the main
program's parameter values). Somehow or other, each module must be capable of computing a
matching score between any text and a category model. This score should be higher, more positive,
the more closely the text matches the model. (It does not need to be proportional to a probability.)

Realistically, however, there is no need for such efforts, certainly not to begin with, since 6 library
modules exist already "off the shelf", to get you started:
docalib_deltoid, docalib_keytoks, docalib_maws.py, docalib_tokspans.py, docalib_topvocs.py and
docalib_vote.

docalib_deltoid.py
This module is an implementation of Burrows's delta (Burrows, 2002) which has become a standard
technique in authorship attribution studies. In a nutshell, this method first finds the most frequent N
word tokens in the corpus; then computes the standard deviations of the relative usage rates of
these words across the various documents of the corpus. This allows it to consider the mean usage
rates of these words in each category as a model of that class. To compare a single text with a class
model, it computes the absolute z-scores of all N words and averages them, a z-score being
computed by subtracting the usage rate of the word under consideration in the text from the mean
rate in the class model and dividing this difference (ignoring sign) by the standard deviation of that
word in the corpus as a whole. This process yields a mean absolute z-score, which is a dissimilarity
measure. Because toccata9.py works with similarities, these mean dissimilarities (di) are converted
to similarities as reciprocals, i.e. 1.0/di. The number, N, of most-frequent words to employ can be set
using the paraline parameter (see Appendix 2) but if this is absent the system sets N to be the
square root, of the vocabulary size (total different vocabulary items, not total running tokens),
rounded to an integer, which is usually a reasonable choice.

docalib_keytoks.py
This is the method that does best on my personal benchmark collection of authorship problems. It
works by first finding the 1024 most common word tokens in the corpus, then keeping from these
the most distinctive. Distinctiveness is scored by comparing each class in turn with the aggregate of
the other classes, using the measure p*q, where p is the proportion of in-class snippets in which the
token is found and q is 1 minus the proportion of other-class snippets in which the token is found,
i.e. the proportion in which it isn't found. A snippet is a sonnet-sized sequence of 115 words by

Page 7 of 30

default. Having ranked these tokens by this score, the N items from both ends of the ranking list are
selected, where N can be given by the user but by default is the square root of the total vocabulary
size, capped at 256. The resultant set of keywords is the union of those picked for each class. For
classification, the frequencies of these selected keywords in the text being classified are correlated
(with Spearman's rho by default) with the relative frequencies of these terms in each class. The class
assigned is that with highest correlation. The method tends to employ quite large numbers of words.
Perhaps surprisingly, even when correlating several hundred words, many on tied ranks with low
frequencies such as 0, 1 or 2 in the text being classified, this method gives quite accurate results.

docalib_maws.py
This contains data and methods inspired by what Mosteller & Wallace (hence MAWS, Mosteller And
Wallace System) in their classic work (1964/1984) on the disputed Federalist papers call their
"robust Bayesian analysis". I have slightly revised the software which I wrote originally in my 1995
thesis (Forsyth, 1995) to automate this approach. Essentially this is a naive Bayesian classifier using
frequent word tokens. It takes 2 parameters, toks2get and multivox (default values 144 and
1.618034 respectively) and computes the rounded value of toks2get multiplied by multivox. It then
takes the resulting number of the most common words in the corpus, according to document
frequency, and reduces them to toks2get again by discarding the least discriminatory items. Then
Bayes factors are computed from the training data for each remaining token according to how often
the relative frequency of that token exceeds the median frequency of that token in the whole
corpus.

docalib_tokspans.py
This method attempts to capture some of the information inherent in syllexis, the co-occurrence of
words in close proximity, and especially sequential co-occurrence. Being primarily aimed at
authorship attribution it starts, conventionally enough, by finding the most common words in the
corpus. The number kept can be set by the user but by default is the square root of the vocabulary
size, rounded to an integer, with an enforced maximum of 1024. Frequency is defined not by gross
count but by the number of snippets in which a word occurs. Default snippet size is 144 tokens. Thus
dispersed words that occur throughout the corpus are favoured over "bursty" words that occur
often but only in few segments. This preliminary word-selection can be considered step 0 of the
overall procedure, after which follow a further four steps: (1) accumulate; (2) eliminate; (3)
correlate; (4) discriminate. Steps 1 and 2 constitute the model-building phase; steps 3 and 4 form
the model-using phase.

Step 1 goes through the texts examining each segment of S consecutive words, where S is a
parameter called spansize, set by the user. With spansize=3, a reasonable choice, the triplet "by the
user", for example, would be examined and -- presuming "by" and "the" were in the frequent word
list but "user" was not -- the tuple ("by","the") would be retained with 1 added to its occurrence
tally. This typically generates a very large number of token tuples, most of which are shorter than
spansize in length. In fact, the zero-length tuple is normally one of the most frequent -- implying a
segment of spansize tokens all absent from the high-frequency list. Most of these tuples are
winnowed out in step 2. In this step any such tuples occurring in fewer than 2 texts are removed,
and, more significantly, the tuples are rated by how strongly they are associated with each category,
with only the most distinctive retained. The default mode of calculating distinctiveness is to compute
(r1-r2)*sqrt(df), where r1 is the rate in the category under consideration, r2 is the rate in all other
categories combined and df is the number of documents of the category under consideration in
which the token occurs. The highest-scoring items in each category are kept. The number to keep for
each category is the rounded square root of that category's vocabulary size. The lists for each
category are merged and become a list of distinctive features. In phase 3 this distinctive-feature list
is used to calculate a correlation coefficient (rank correlation by default) of each test text with each

Page 8 of 30

category in the following manner. The frequencies of every distinctive feature in the text under
consideration, including zero, forms one vector which is correlated with vectors of the total
frequencies of those features in each category, giving C correlations, where C is the number of
categories. In step 4, the highest of those correlations is chosen to assign a category to the text
concerned.

docalib_topvocs.py
This implements a classifier inspired by the approach of Burrows (1992). It uses the most frequent
word-tokens in the training corpus as features. The number of most frequent words used in the
feature list defaults to the (rounded) square root of the vocabulary size of the entire corpus, i.e. of
the number of distinct word types. To compute a matching score between a text and a model, the
correlation between the frequencies of the words in the common-word feature list of both the text
and the model is computed. The user can select either Pearson's r or Spearman's rank correlation
coefficient. Rank correlation is the default. (Using correlations is what differentiates this technique
from most classifiers in the Mosteller/Wallace/Burrows tradition.)

docalib_vote.py
Module docalib_vote.py is exceptional in that it actually uses every single word-type in the training
corpus as a feature. The 'model' developed for classification consists simply of frequency-tables for
every text category, containing the frequency of that word in that category. To classify a new text,
the frequency of every word in that text is counted; then, for each category, a similarity score is
computed by adding a 'vote' by each word in the text to a running total. The vote is either sqrt(f) or
0, where f is the frequency of that word in the text being classified , according to whether the word's
relative frequency is more common in the category concerned than in the corpus as a whole, or not.
The category yielding the highest total is chosen. This simple procedure was intended merely to
establish a baseline, but various trials have shown that it works rather well, perhaps because
information from the whole vocabulary structure is utilized.

Phase 3 : Preparing a Parameter File
Below is a listing of parameter file cicsvocs.txt which comes with the toccata distribution on the
parapath folder.

comment testing with Ciceronian corpus metafile :

jobname cicsvocs

trainmet c:\toccata\samples\cics\metadat\cictrain.txt

testmeta c:\toccata\samples\cics\metadat\holdout3.txt

wordonly 1

libname docalib_topvocs

A parameter file is just a plain text file with one item per line. Each line should begin with the
parameter name, then 1 or more blank spaces, then the parameter value. The following table
interprets the above parameter file, line by line.

Page 9 of 30

Phase 4 : Running the Main Program!
When you execute toccata9.py, for example with a command such as that below (shown in bold),
you should see something like the following lines

C:\2017> python c:\toccata\p3\toccata9.py

C:\toccata\p3\toccata9.py 9.2 Sat Apr 22 15:03:32 2017

command-line args. = 1

prepath : C:\toccata\p3

working folder: C:\2017

script usage: python C:\toccata\p3\toccata9.py <parafile>

please give parameter file name :

on the screen. If your parameter file is in the same directory as the program or in toccata's parapath
subfolder you won't have to give the full path specification, just its name (.txt extension presumed).

More likely, you'll execute the program by double-clicking on toccata9.py in the toccata\p3 folder,
which should produce a screen something like the example below.

Parameter Default value Function
comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can

be used to insert reminders about what the file is meant to do.
jobname toccata This gives the job a name. Any text string can be the value. It isn't

necessary but it is useful as the jobname will be used as a prefix to
the program's output files, so it can be seen that they form a
group.

trainmet [None] This should be the full file specification of a metafile that indicates
the text files that belong to the training corpus.

testmeta [None] This should be the full file specification of a metafile that indicates
the holdout sample. It is optional: if omitted, the program only
does the leave-n-out testing step.

wordonly 0 This should be integer 0 or 1. If it is 1, the tokenizer will ignore
tokens unless they begin with an alphanumeric character. If it is
zero, all tokens will be considered, even sequences of punctuation
symbols and so on. Since punctuation of works authored by Cicero
was definitely not Cicero's, it is set to 1 here.

libname docalib_topvocs This should be the name either of one of the supplied classifier
libraries (e.g. docalib_deltoid, docalib_keytoks, docalib_maws.py,
docalib_tokspans, docalib_topvocs.py or docalib_vote) or a user-
written library. Don't include the .py suffix, as this is appended
automatically by Python.

Page 10 of 30

Here the program has reached the point where the user is just about to press Return to select the
cicsvocs parameter file. After pressing Return, various intermediate results will appear on screen,
ending with something resembling the display shown below.

Using this parameter file, cicsvocs.txt, shown in the previous section on the cics dataset produces
five output files. The most important will normally have a name composed of the jobname, then
"_list", with .txt extension. A listing of the output file cicsvocs_list.txt is shown below. (The other
output files include a dump of data that could be exported into R or a comparable statistical
package. More on them later.)

dateline Sat Apr 22 14:58:18 2017

id C:\toccata\parapath\cicsvocs.txt

libname docalib_topvocs

progname C:\toccata\p3\toccata9.py

Page 11 of 30

targvar doctype

testmeta c:\toccata\samples\cics\metadat\holdout3.txt

trainmet c:\toccata\samples\cics\metadat\cictrain.txt

==== Subsampling trial :

rank weight filename pred:true predval meanrest

 1 0.3115 Cicero_Philippics2.txt cics + cics 0.7923 0.4808

 2 0.3066 Cicero_Brutus1.txt cics + cics 0.7230 0.4164

 3 0.2799 Cicero_Brutus2.txt cics + cics 0.7650 0.4851

 4 0.2316 Cicero_Atticus1.txt cics + cics 0.7841 0.5525

 5 0.2197 Cicero_ProQuinctio_latlib. cics + cics 0.7062 0.4865

 6 0.1942 Cicero_InPisonem_latlib.tx cics + cics 0.6734 0.4792

 7 0.1885 Cicero_ProFlacco_latlib.tx cics + cics 0.7126 0.5241

 8 0.1881 Cicero_CatoSenectute.txt cics + cics 0.7463 0.5581

 9 0.1727 Cicero_ProCaecina_latlib.t cics + cics 0.7446 0.5719

 10 0.1720 Cicero_ProMarcello.txt cics + cics 0.6793 0.5073

 11 0.1683 Cicero_ProSulla.txt cics + cics 0.6660 0.4977

 12 0.1603 Sigonio_LaudHist.txt sigonio + sigonio 0.7204 0.5602

 13 0.1562 Sigonio_LatLing.txt sigonio + sigonio 0.7550 0.5988

 14 0.1541 Cicero_DeLegibus.txt cics + cics 0.7782 0.6241

 15 0.1539 Cicero_ProMilone_latlib.tx cics + cics 0.5992 0.4453

 16 0.1450 Cicero_Tusculan2.txt cics + cics 0.7411 0.5961

 17 0.1407 Cicero_Amicitia.txt cics + cics 0.7643 0.6236

 18 0.1316 Cicero_DeInventione2_latli sigonio - cics 0.5994 0.4679

 19 0.1311 Sigonio_Elo1.txt sigonio + sigonio 0.7060 0.5748

 20 0.1155 Cicero_InVerremII2_latlib. cics + cics 0.7444 0.6289

 21 0.0957 Muretus_Pius.txt muretus + muretus 0.6925 0.5967

 22 0.0912 Muretus_PaulFox.txt muretus + muretus 0.6949 0.6037

 23 0.0899 Sigonio_Elo2.txt sigonio + sigonio 0.6561 0.5662

 24 0.0895 Muretus_Phil.txt sigonio - muretus 0.6788 0.5893

 25 0.0880 Cicero_Tusculan1.txt cics + cics 0.7099 0.6218

 26 0.0860 Cicero_ProSexto.txt cics + cics 0.6524 0.5663

 27 0.0852 Muretus_Rege.txt muretus + muretus 0.6265 0.5413

 28 0.0845 Cicero_DePartitione_latlib cics + cics 0.5574 0.4728

 29 0.0777 Cicero_DeFinibus.txt cics + cics 0.6915 0.6138

 30 0.0754 Cicero_Orator.txt cics + cics 0.6474 0.5719

 31 0.0584 Cicero_Officiis1.txt sigonio - cics 0.6745 0.6161

 32 0.0581 Cicero_ProSestio_latlib.tx cics + cics 0.6139 0.5558

 33 0.0581 Cicero_Somnium.txt cics + cics 0.5967 0.5386

 34 0.0578 Muretus_Util.txt muretus + muretus 0.7062 0.6484

 35 0.0554 Sigonio_HistIt4b.txt sigonio + sigonio 0.6167 0.5613

 36 0.0514 Cicero_ProCluentio.txt cics + cics 0.6068 0.5554

 37 0.0494 Sigonio_HistIt4a.txt sigonio + sigonio 0.6154 0.5660

 38 0.0283 Cicero_ArchiaPoeta.txt sigonio - cics 0.6859 0.6576

 39 0.0239 Cicero_Cat2.txt sigonio - cics 0.5642 0.5404

 40 0.0231 Cicero_Rep2.txt sigonio - cics 0.5948 0.5718

 41 0.0175 Cicero_DeImperio.txt cics + cics 0.6430 0.6255

 42 0.0167 Cicero_NaturaDeorum2.txt sigonio - cics 0.6543 0.6376

+++++++++++++++++-+++++-++++++-++++++---+-

Confusion matrix :

Truecat = cics muretus sigonio

Predcat : cics 159 0 2

Predcat : muretus 2 25 7

Predcat : sigonio 26 6 31

Kappa value = 0.6595

Precision (%) by category :

cics 98.7578

muretus 73.5294

sigonio 49.2063

Recall (%) by category :

cics 85.0267

muretus 80.6452

sigonio 77.5

Page 12 of 30

cases = 258

cases with unseen category labels = 0

hits = 215

percent hits = 83.33

proportional reduction in error = 0.5314

relative mean pseudo-entropy gain = 0.1034

mean pseudo-spherical score = 0.6441

marginal gain = 0.9174

gapscore = 0.9092

==== Holdout trial :

rank weight filename pred:true predval meanrest

 1 0.1472 Cicero_Philippics7.txt cics + cics 0.6350 0.4878

 2 0.1458 EpistulaOct.txt cics ? fake 0.5916 0.4459

 3 0.1297 Muretus_Ingress.txt muretus + muretus 0.6642 0.5345

 4 0.1200 Lauredan_FranVen.txt sigonio ? neolats 0.7536 0.6336

 5 0.0908 Muretus_Laud.txt muretus + muretus 0.7261 0.6353

 6 0.0740 Lauredan_Mant.txt sigonio ? neolats 0.6927 0.6187

 7 0.0586 Sigonio_Dialogo.txt sigonio + sigonio 0.6864 0.6278

 8 0.0558 Cicero_Tusculan4.txt cics + cics 0.6935 0.6377

 9 0.0502 Seneca_Ira1.txt cics ? claslats 0.4870 0.4368

 10 0.0457 ConsolA.txt muretus ? cons 0.6425 0.5968

 11 0.0421 Seneca_Prov.txt muretus ? claslats 0.5401 0.4980

 12 0.0418 Seneca_Otio.txt sigonio ? claslats 0.5546 0.5128

 13 0.0413 RhetHerr.txt cics ? fake 0.4671 0.4258

 14 0.0395 Seneca_Brevit.txt cics ? claslats 0.6248 0.5853

 15 0.0363 Seneca_Cons.txt muretus ? claslats 0.6000 0.5638

 16 0.0318 ConsolB.txt muretus ? cons 0.6682 0.6363

 17 0.0199 Abelard_HistCalamitatum_la sigonio ? neolats 0.5482 0.5282

 18 0.0181 Heloise_Epistola_latlib.tx muretus ? neolats 0.5242 0.5061

+?+?+?++??????????

Confusion matrix :

Truecat = cics claslats cons fake muretus neolats sigonio

Predcat : cics 2 2 0 2 0 0 0

Predcat : claslats 0 0 0 0 0 0 0

Predcat : cons 0 0 0 0 0 0 0

Predcat : fake 0 0 0 0 0 0 0

Predcat : muretus 0 2 2 0 2 1 0

Predcat : neolats 0 0 0 0 0 0 0

Predcat : sigonio 0 1 0 0 0 3 1

Kappa value = 1.0

Precision (%) by category :

cics 33.3333

muretus 28.5714

sigonio 20.0

Recall (%) by category :

cics 100.0

claslats 0.0

cons 0.0

fake 0.0

muretus 100.0

neolats 0.0

sigonio 100.0

cases = 18

cases with unseen category labels = 13

cases with known category labels = 5

[results below, till '*', only apply to these 5 cases]

hits = 5

percent hits = 100.0

proportional reduction in error = 1.0

relative mean pseudo-entropy gain = 0.0925

mean pseudo-spherical score = 0.6369

Page 13 of 30

marginal gain = 0.8282

gapscore = 1.0

*

==== Posthoc ranking :

rank credence filename pred:true confidence congruity

 1 0.6749 Lauredan_FranVen.txt sigonio ? neolats 0.4981 0.9146

 2 0.5783 Muretus_Laud.txt muretus + muretus 0.3398 0.9844

 3 0.4304 Muretus_Ingress.txt muretus + muretus 0.5154 0.3594

 4 0.4062 Cicero_Philippics7.txt cics + cics 0.5907 0.2793

 5 0.3843 Lauredan_Mant.txt sigonio ? neolats 0.2471 0.5976

 6 0.3293 Sigonio_Dialogo.txt sigonio + sigonio 0.1815 0.5976

 7 0.2972 Cicero_Tusculan4.txt cics + cics 0.1544 0.5718

 8 0.2650 EpistulaOct.txt cics ? fake 0.5869 0.1197

 9 0.1479 ConsolB.txt muretus ? cons 0.0560 0.3906

 10 0.1468 ConsolA.txt muretus ? cons 0.0811 0.2656

 11 0.1371 Seneca_Brevit.txt cics ? claslats 0.0714 0.2633

 12 0.0885 Seneca_Otio.txt sigonio ? claslats 0.0714 0.1098

 13 0.0546 Seneca_Cons.txt muretus ? claslats 0.0637 0.0469

 14 0.0385 Abelard_HistCalamitatum_la sigonio ? neolats 0.0135 0.1098

 15 0.0334 Seneca_Prov.txt muretus ? claslats 0.0714 0.0156

 16 0.0163 Seneca_Ira1.txt cics ? claslats 0.1004 0.0027

 17 0.0138 RhetHerr.txt cics ? fake 0.0714 0.0027

 18 0.0135 Heloise_Epistola_latlib.tx muretus ? neolats 0.0116 0.0156

?+++?++???????????

The first few lines of this output simply echo some of the more important parameter settings from
the input parameter file (cicsvocs.txt on the distribution). The rest of the output can be divided into
three sections, delimited by the lines

==== Subsampling trial :
==== Holdout trial :
==== Posthoc ranking :

which mark results from the three phases of the program.

The first block (after a few header lines for identification purposes) displays the results of the
subsampling trial. This takes the training corpus identified by trainmet and repeatedly splits it into 2
portions of size N and M. M is the rounded square root of the total number of texts in the training
corpus and N is that total minus M, e.g. with 42 training files N will equal 36 and M will be 6. In each
cycle, M texts will be picked at random and a 'model' formed on the remaining N cases. Then that
model will be used to predict the categories of each of the M texts absent from the model-building
procedure and the results recorded. This subsampling process continues until the total number of
predictions made is at least 255. In the example above, that resulted in a total of 258 decisions. Only
the first 42 of these are listed in detail, since there are only 42 individual files, but the confusion
matrix and summary evaluation data is based on all 258 decisions.

Note that these 42 cases have been sorted in descending order of the column labelled "weight". This
value is computed by simply taking the maximum model-match score and subtracting from it the
arithmetic mean of all the other matching scores. The higher this value the more clearly the
predicted category's matching score exceeds that of the other categories. Thus items near the top of
this list should indicate more confident decisions than those near the bottom, and we would expect
more correct answers (marked with '+') near the top and more incorrect decisions (marked with '-')
near the bottom.

The line
+++++++++++++++++-+++++-++++++-++++++---+-

Page 14 of 30

that ends this list is just a string of these markers concatenated in order left to right from higher to
lower. As expected, plus signs are more frequent towards the left side.

If there is a testmeta file, as there is in the above example, the next 2 blocks apply the models
created from the training data to the holdout sample in 2 subtly different ways -- first as individual
cases, i.e. just as in the subsampling phase, next with reference to the subsampling results as a
whole, i.e. by trying to assess the extremity of each score in comparison with the scores obtained in
phase 1. See next section....

Phase 5 : Interpreting the Output
In step (a) the program makes 258 decisions. It computes a matching score between each text and
the category models (ensuring by subsampling that each case's data is excluded from its own
category model) and, since the true category is known, considers the decision a success if the
highest matching score is that of the true category.

At the foot of the subsampling block are evaluative statistics, not just raw success percentage, but a
summary of the categorical decisions including a complete confusion matrix, which allows
computation of recall and precision in each category.

There are also several other measures designed to assess the quality of the classification process.
The Kappa value is Cohen's kappa, a multi-class index of agreement, computed according to the
formula given in Siegel & Castellan (1988). There is also a proportional reduction in error measure,
indicating how much the error rate is less than guessing based on the frequencies in each category.

The above measures are based on discrete outcomes, i.e. the integer number of correct or incorrect
decisions. Some continuous indices are also printed. Arguably, these are more sensitive than
measures based on whole numbers, as they are influenced by how much the correct category is
rated above or below the other categories. The relative reduction in entropy and "spherical score"
strictly only apply when the matching scores given to each category are intended as probabilities,
thus only with docalib_maws among the supplied modules. However, rather than suppress them,
the program makes an attempt to convert similarities to probabilities and attaches the prefix
"pseudo-" to the entropy gain and spherical score. The latter is computed as pc / √∑(pi^2) where pi is
the probability or pseudo-probability of each category and pc is the probability or pseudo-probability
of the correct category.

More robust measures are "marginal gain" and "gapscore". Marginal gain is computed as goodgaps /
allgaps where goodgaps is the sum of the differences between the similarity score of the system's
chosen category and the mean similarities of the non-chosen categories in those cases where it was
correct, and allgaps is the sum of these differences for all cases. Gapscore is intended as a
parametric analogue of the proportional reduction in error statistic. The system records three values
for each decision, the maximum similarity score, the mean similarity score and the similarity score
assigned to the correct category. These are summed over all decisions as maxsum, meansum and
truesum. Gapscore is then computed as
gapscore = (truesum - meansum) / ((maxsum - meansum)+tiny),
where tiny is 10 to the power of -16, just to avoid division by zero in degenerate cases such as when
all scores are equal. A score of 1.0 will be attained if maxsum equals truesum, which happens if the
system always assigns highest similarity to the correct category.

The next block, beginning "====Holdout trial :", does essentially the same with the holdout sample,
if one has been given. The confusion matrix may contain columns for categories not present in the
training data, as in this case, where we have several 'distractors'. The program cannot determine

Page 15 of 30

whether it made a right or wrong decision in such cases, so they are marked with a question mark
("?"). Thus the line at the foot of this list of results
+?+?+?++??????????

indicates that the program could only make five definite decisions -- all correct as it happens and all
in the left-hand half. (Would you expect me to pick a poor example?)

The third block, beginning "====Posthoc ranking :", is in my view the most interesting, but needs to
be treated with caution. To illustrate, consider the results in this holdout sample, reproduced below.

==== Posthoc ranking :

rank credence filename pred:true confidence congruity

 1 0.6749 Lauredan_FranVen.txt sigonio ? neolats 0.4981 0.9146

 2 0.5783 Muretus_Laud.txt muretus + muretus 0.3398 0.9844

 3 0.4304 Muretus_Ingress.txt muretus + muretus 0.5154 0.3594

 4 0.4062 Cicero_Philippics7.txt cics + cics 0.5907 0.2793

 5 0.3843 Lauredan_Mant.txt sigonio ? neolats 0.2471 0.5976

 6 0.3293 Sigonio_Dialogo.txt sigonio + sigonio 0.1815 0.5976

 7 0.2972 Cicero_Tusculan4.txt cics + cics 0.1544 0.5718

 8 0.2650 EpistulaOct.txt cics ? fake 0.5869 0.1197

 9 0.1479 ConsolB.txt muretus ? cons 0.0560 0.3906

 10 0.1468 ConsolA.txt muretus ? cons 0.0811 0.2656

 11 0.1371 Seneca_Brevit.txt cics ? claslats 0.0714 0.2633

 12 0.0885 Seneca_Otio.txt sigonio ? claslats 0.0714 0.1098

 13 0.0546 Seneca_Cons.txt muretus ? claslats 0.0637 0.0469

 14 0.0385 Abelard_HistCalamitatum_la sigonio ? neolats 0.0135 0.1098

 15 0.0334 Seneca_Prov.txt muretus ? claslats 0.0714 0.0156

 16 0.0163 Seneca_Ira1.txt cics ? claslats 0.1004 0.0027

 17 0.0138 RhetHerr.txt cics ? fake 0.0714 0.0027

 18 0.0135 Heloise_Epistola_latlib.tx muretus ? neolats 0.0116 0.0156

?+++?++???????????

Here we have results from 18 cases unseen in the training phase, of which 11 are distractors, five are
of known authorship and 2 (ConsolA and ConsolB) are the first and second halves of the purported
Consolatio Ciceronis -- the item whose questioned authorship motivated the collection of all this
data.

The listing ranks the program's holdout decisions from most to least credible. The upper half
includes all five correct assignments and four distractors. The lower half contains no correct
answers, just nine distractors.

This output addresses the very real problem of documents from outside the known training
categories. The listing is ordered by a quantity labelled "credence". This is simply the geometric
mean of the last two numbers in each line, labelled "confidence" and "congruity". Confidence is
derived from the preceding subsampling phase. To be specific, if W is the number of correct
decisions with lower difference scores (labelled "weight" in the output listing) during the
subsampling phase and L is the number of incorrect decisions with lower difference scores during
that phase, then "confidence" is (W+L/2+0.5) / (S+1), where S is the number of subsampling trials.
Congruity is computed as (0.5 + B) / (S+1), where B is the number of cases during the S subsampling
trials in which items of the class selected had a lower similarity score to their own class model than
that of the present instance. Thus congruity uses the randomized trials to estimate the empirical
strength of similarity of the present case to its assigned category, while confidence estimates how
the gap between the chosen category and the rest compares with those encountered during those
trials.

This is an important aspect of the software. In text-classification, as with all kinds of classification,
the problem of never-before-seen categories can loom large. (See, for instance, Eder, 2013.) Like

Page 16 of 30

most trainable classifiers, Toccata always picks the most likely category from those it has
encountered in training, but the most likely may not be very likely; and accurately estimating just
how likely, in a completely open set, is actually impossible. The confidence and congruity scores give
useful information in this regard. For example, all the bottom half (9 decisions) have both confidence
and congruity scores less than 0.5, and none is correct. (We know that Muretus didn't write the
Consolatio.) The list is shown in descending order. Satisfyingly, all the correct answers come in the
upper half.

Incidentally, two of the queried decisions in the top half of this list, at ranks 1 and 5, are cases in
which the program categorized texts by Lauredanus as being by Sigonio. Lauredanus, pen name of
Bernardino de Loredan, was Carlo Sigonio's student. In other words the system confused the pupil
with his teacher. Given that it had no training examples of Lauredanus, this would seem a near-miss
rather than an outright mistake.

There is no absolute answer to the "none-of-the-above" problem, but these indications should be
helpful to the human user, who will normally be using this sort of program in an exploratory context.
Ultimately it will always be a matter of human judgement. My hope is that toccata can assist such
judgements.

This is well illustrated by the following posthoc listing of the holdout data from the sonnets sample.

==== Posthoc ranking :

rank credence filename pred:true confidence congruity

 1 0.7685 ChrRoss_WinterSecret.txt ChrRoss + ChrRoss 0.6704 0.8810

 2 0.7281 WilShak_6.txt WilShak + WilShak 0.6498 0.8158

 3 0.6534 DylThom_Altar09.txt EdnMill ? DylThom 0.5693 0.7500

 4 0.6298 MicDray_Idea000.txt MicDray + MicDray 0.4307 0.9211

 5 0.6038 WilShak_137.txt WilShak + WilShak 0.5131 0.7105

 6 0.5624 JohDonn_Nativity.txt JohDonn + JohDonn 0.4401 0.7188

 7 0.5175 MicDray_Idea048.txt JohDonn - MicDray 0.3727 0.7188

 8 0.4509 DylThom_Altar05.txt RupBroo ? DylThom 0.3090 0.6579

 9 0.4424 WilShak_109.txt WilShak + WilShak 0.3914 0.5000

 10 0.3989 TomWyat_THEY_FLEE_FROM_ME. EdmSpen ? ThoWyat 0.3333 0.4773

 11 0.3923 PerShel_Ozymandias.txt EliBrow ? PerShel 0.1910 0.8056

 12 0.3740 EliBrow_SP23.txt DanRoss - EliBrow 0.1929 0.7250

 13 0.2851 WilShak_RomeoJuliet.txt WilShak + WilShak 0.1816 0.4474

 14 0.2699 PhiSidn_astel108.txt EliBrow - PhiSidn 0.1049 0.6944

 15 0.2600 DylThom_Altar06.txt EliBrow ? DylThom 0.0974 0.6944

 16 0.2248 JohDonn_Temple.txt EdnMill - JohDonn 0.1142 0.4423

 17 0.2024 Lincoln1863Gettysburg.txt SamDani ? AbeLinc 0.0655 0.6250

 18 0.1903 RicFors_LaBocca.txt RupBroo ? RicFors 0.0655 0.5526

 19 0.1530 HelFors_1958.txt EliBrow ? HelFors 0.0337 0.6944

 20 0.1262 oxford_13.txt WilWord ? Oxford 0.0356 0.4474

 21 0.1079 RicFors_Underworld.txt EdnMill ? RicFors 0.0318 0.3654

 22 0.0830 HelFors_1982.txt DanRoss ? HelFors 0.0131 0.5250

 23 0.0579 DylThom_Altar03.txt RupBroo ? DylThom 0.0075 0.4474

 24 0.0345 PhiSidn_astel030.txt EdmSpen - PhiSidn 0.0075 0.1591

++?+++-?+??-+-?-???????-

In this sample only half, 12 out of 24, of the texts come from the 14 categories in the training data.
The other 12 are "distractors". Ranking by "credence" has done the job it is meant to do. In the
upper half of the listing are 6 correct answers, 4 distractors and 2 mistakes; the lower half contains 1
correct answer, 8 distractors and 3 mistakes.

A graph, plotting these items in the dimensions of congruity and confidence, gives a visual
impression of this result. In this plot correct decisions are coloured green, mistakes black and
distractors red.

Page 17 of 30

The upper right quadrant contains five correct decisions and one distractor. The lower left quadrant
contains two correct decisions two mistakes and six distractors. In this example, confidence appears
to be more informative than congruity, though this isn't always true.

Given that the median length of these texts is less than 120 words, that chance success would be 1
in 14, and that the training data for each known author consists of only about 1600 words, the
system has done well to place 6 of the 7 correct answers in the upper half of its ranking and 8 of the
12 distractors in the lower half.

Mosteller and Wallace in 1964 faced a situation in which the true author had to be one of Hamilton
or Madison, but this kind of problem, with a small finite set of known candidate authors, is quite a
rare luxury. More realistically, there is always some degree of uncertainty about whether the
putative list of candidates does indeed include the true author. The possibility of joint authorship
raises essentially the same issue. For instance, it is conceivable that Lauredanus assisted Sigonio in
composing the 1583 Consolatio, in which case we wouldn't expect it to be very similar to works
written by Sigonio alone.

In some situations, a decision-maker is free to give "none of the above" as a response, in which case
the posthoc ranking is genuinely valuable, since it allows dubious decisions to be avoided. However
if a firm decision must be made in every case, then this doesn't help. (For fuller discussion of this
issue, see Eder (2013).)

There's more
Running toccata9.py will produce a number of output files. The main listing (normally with base
name ending "_list") is what has just been discussed. Two others will by default have base names

Page 18 of 30

ending with "_dump", "_mods". There will also be a file, simply called toccata.txt by default, with
information of the system's parameter settings.

The _dump file is a tab-delimited .dat file intended to be imported into R for various statistical
analyses. (It could also be imported into Excel, Minitab, SPSS et cetera.) To illustrate the format, the
first five lines of the _dump file fedsvocs_dump.dat, which was produced by running toccata on the
Federalist data, are listed below.

mode ok textnum filename predcat truecat Hamilton

 Madison

testmode + 3 fedpap08.txt Hamilton Hamilton 0.8535487 0.8365055

testmode + 4 fedpap09.txt Hamilton Hamilton 0.8062115 0.7492547

testmode + 28 fedpap36.txt Hamilton Hamilton 0.8466486 0.7153315

testmode + 31 fedpap39.txt Madison Madison 0.6426143 0.7654597

....

Essentially this file contains the results from all phases of the program (subsampling always, as well
as holdout and posthoc, if a testmeta file is given) in a rectangular format that is acceptable to many
statistical packages. The idea is that it allows further analyses, &/or graphical displays.

Additionally, if a holdout sample is given, the program will produce a file of the same name as the
_dump file, with _posthoc appended. This contains a tab-delimited version of the posthoc ranking,
suitable for export to R and similar packages.

And still more
As well as the _dump file, toccata9.py will produce a _mods output file. This contains the models
generated from the whole training corpus, i.e. the models used to classify texts in the holdout and
posthoc phases. Different methods will have models with different structures, so models from the
four supplied libraries don't look the same. Yours, if you write a library module, will doubtless be
different again. So there is no general guide to interpreting such models. Nevertheless, they usually
will contain useful information. For instance, the model produced by running the docalib_maws.py
library on the federalist corpus is, in effect, a keyword listing. Its first 7 entries are listed below.

classes = 2

docs = 64 64

vocsize = 96

48

id toks2get=48 multivox=2

multivox 2

slug 2.0

toks2get 48

toksort 1

docfreq 63

hibayes [0.37037037037037035, 0.8888888888888888]

highvals [18, 14]

id 42

item on

lobayes [0.6296296296296297, 0.1111111111111111]

lowvals [32, 0]

midrate 0.0038

newquay 0.2593

docfreq 60

hibayes [0.6296296296296297, 0.1111111111111111]

highvals [32, 0]

id 60

item there

Page 19 of 30

lobayes [0.37037037037037035, 0.8888888888888888]

lowvals [18, 14]

midrate 0.0025

newquay 0.2593

docfreq 53

hibayes [0.6296296296296297, 0.1111111111111111]

highvals [32, 0]

id 93

item upon

lobayes [0.37037037037037035, 0.8888888888888888]

lowvals [18, 14]

midrate 0.0025

newquay 0.2593

docfreq 64

hibayes [0.6111111111111112, 0.16666666666666666]

highvals [31, 1]

id 1

item to

lobayes [0.3888888888888889, 0.8333333333333334]

lowvals [19, 13]

midrate 0.0386

newquay 0.2222

docfreq 64

hibayes [0.6111111111111112, 0.16666666666666666]

highvals [31, 1]

id 11

item at

lobayes [0.3888888888888889, 0.8333333333333334]

lowvals [19, 13]

midrate 0.0028

newquay 0.2222

docfreq 64

hibayes [0.3888888888888889, 0.8333333333333334]

highvals [19, 13]

id 22

item and

lobayes [0.6111111111111112, 0.16666666666666666]

lowvals [31, 1]

midrate 0.0245

newquay 0.2222

docfreq 64

hibayes [0.4074074074074074, 0.7777777777777778]

highvals [20, 12]

id 9

item by

lobayes [0.5925925925925926, 0.2222222222222222]

lowvals [30, 2]

midrate 0.0081

newquay 0.1852

This shows that the highest-ranked, most discriminatory, words for these 2 authors are: on, there,
upon, to, at, and & by. If we look at the information associated with "to", we find that 31 of
Hamilton's papers used "to" at a higher rate than the median for all 64 papers (3.86%) while in only
1 of Madison's 14 undisputed papers was "to" used with more than this relative frequency. If
somebody writes and asks me to explain this in more detail, I might possibly agree.

It remains to point out that the toccata.txt file contains a list of all the program parameters and their
values. Normally there is no need to look at this, but if a trial gives strange results it is sometimes
useful to have a record of program settings.

Page 20 of 30

Finally, is perhaps worth noting that using the same metafile as both trainmet and testmeta can
sometimes be useful. From a strict classification point of view this is a kind of cheating, but the
resulting holdout and posthoc listings may be informative. In effect they rank the texts by typicality.
Thus they can be used to identify texts that are typical of their class (ranked near the top of the list)
and those that are anomalous (ranked near the bottom) -- at least within the universe of discourse
defined by the corpus as a whole.

References

Burrows, J.F. (1992). Not unless you ask nicely: the interpretive nexus between analysis and
information. Literary & Linguistic Computing, 7(2), 91-109.

Burrows, J.F. (2002). 'Delta': a measure of stylistic difference and a guide to likely authorship.
Literary & Linguistic Computing, 17(3), 267-287.

Eder, M. (2013). Bootstrapping Delta: a safety net in open-set authorship attribution. Digital
Humanities 2013: Conference Abstracts. Lincoln: University of Nebraska-Lincoln, 169-72.

Forsyth, R.S. (1995). Stylistic Structures: a Computational Approach to Text Classification.
Unpublished Doctoral Thesis, Faculty of Science, University of Nottingham.
http://www.richardsandesforsyth.net/doctoral.html

Forsyth, R.S., Holmes, D.I. & Tse, E.K. (1999). Cicero, Sigonio, and Burrows: investigating the
authenticity of the "Consolatio". Literary & Linguistic Computing, 14(3), 1-26.

Holmes, D.I. & Forsyth, R.S. (1995). The 'Federalist' revisited: new directions in authorship
attribution. Literary & Linguistic Computing, 10(2), 111-127.

Mosteller, F. & Wallace, D.L. (1984). Applied Bayesian and Classical Inference: the Case of the
Federalist Papers. New York: Springer-Verlag.
[First edition, 1964.]

Siegel, S. & Castellan, N.J. (1988). Nonparametric Statistics for the Behavioural Sciences. New York:
McGraw-Hill.

http://dh2013.unl.edu/abstracts/
http://dh2013.unl.edu/abstracts/
http://www.richardsandesforsyth.net/doctoral.html

Page 21 of 30

Appendix 1 : Metafiles

A metafile is a kind of data dictionary. It specifies which text files to work on, and may link associated
data with each file. The main point is that metafiles can be read into a spreadsheet program such as
Excel, modified, then written back out again to guide further processing (without necessarily
rearranging a large collection of documents on disc). Another point to note is that all the software
described herein assumes that the first 2 columns of a metafile are called "prepath" and "filename"
and contain the file path then the file name. Columns within a metafile are delimited by the
horizontal tab character. The toccata9.py program also needs a third column, called "doctype" by
default.

The first line of a metafile is treated as a header, giving column names.

As an example, the Federalist training metafile (c:\toccata\samples\feds\mets\fed1.txt) is listed
below.

prepath filename producer

c:\toccata\samples\feds\FedPaps\ fedpap01.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap06.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap07.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap08.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap09.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap10.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap11.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap12.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap13.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap14.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap15.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap16.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap17.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap21.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap22.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap23.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap24.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap25.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap26.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap27.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap28.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap29.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap30.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap31.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap32.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap33.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap34.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap35.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap36.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap37.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap38.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap39.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap40.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap41.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap42.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap43.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap44.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap45.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap46.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap47.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap48.txt Madison

c:\toccata\samples\feds\FedPaps\ fedpap59.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap60.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap61.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap65.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap66.txt Hamilton

Page 22 of 30

c:\toccata\samples\feds\FedPaps\ fedpap67.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap68.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap70.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap71.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap72.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap73.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap74.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap75.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap76.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap77.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap78.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap79.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap80.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap81.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap82.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap83.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap84.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap85.txt Hamilton

Here the category-column is called "producer" rather than "doctype", which would entail putting a
line

targvar producer

into any parameter file using this metafile. (See Appendix 2.)

For this dataset, the corresponding holdout metafile (toccata\samples\feds\mets\holdout1.txt) is
shown below. This contains works by some contemporaries as well as Hamilton and Madison. It also
includes the disputed essays, coded as "Mad?".

prepath filename producer

c:\toccata\samples\feds\holdout\ Ham1787PlanGovt.txt Hamilton

c:\toccata\samples\feds\holdout\ Ham1790PublicCredit.txt Hamilton

c:\toccata\samples\feds\holdout\ Ham1791ManuRept.txt Hamilton

c:\toccata\samples\feds\holdout\ Jeff1801.txt Jefferson

c:\toccata\samples\feds\holdout\ Lincoln1863Gettysburg.txt Lincoln

c:\toccata\samples\feds\holdout\ Mad1785.txt Madison

c:\toccata\samples\feds\holdout\ Madison_BillofRights_1789.txt Madison

c:\toccata\samples\feds\holdout\ Mad1809.txt Madison

c:\toccata\samples\feds\holdout\ Mad18151205.txt Madison

c:\toccata\samples\feds\holdout\ fedpap04.txt JJay

c:\toccata\samples\feds\holdout\ fedpap18.txt both

c:\toccata\samples\feds\holdout\ fedpap19.txt both

c:\toccata\samples\feds\holdout\ fedpap20.txt both

c:\toccata\samples\feds\holdout\ fedpap49.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap50.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap51.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap52.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap53.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap54.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap55.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap56.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap57.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap58.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap62.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap63.txt Mad?

c:\toccata\samples\feds\holdout\ fedpap64.txt JJay

c:\toccata\samples\feds\holdout\ fedpap69.txt Hamilton

c:\toccata\samples\feds\holdout\ fedpap70b.txt Hamilton

c:\toccata\samples\feds\holdout\ sou1811.txt Madison

c:\toccata\samples\feds\holdout\ PaineT_AgrarianJustice.txt TomPaine

Of course, the point of metafiles is that they can be edited, so there is no need to stick to this
particular selection.

Page 23 of 30

minimet4.py

The easiest way to create an initial metafile is using the metaget.py file, described above under the
heading "Phase 1". However, this uses the Tkinter library which seems to be sensitive to the exact
version of Python 3 in use; so in case that doesn't work properly on your computer, I have left the
more basic program minimet4.py in the distribution.

For example, to create a metafile for all the Federalist papers, the following parameter file could be
supplied to minimet4.py.

comment initial Federalist metafile :

jobname fed0

corpath c:\toccata\samples\feds\FedPaps\

metazero c:\toccata\samples\feds\mets\fedzero.txt

targname producer

targval Hamilton

Briefly, corpath tells the program where the text files are located; metazero specifies the metafile to
be created and where to place it; and targval gives the value to be put in the targname column.
(More on parameter files below, in Appendix 2.) Running minimet4.py with this parameter file
(fed0.txt) would give the following output on screen.

C:\toccata\p3\minimet4.py 4.2 Thu Nov 28 16:06:37 2013

command-line args. = 1

prepath : C:\toccata\p3

working folder: C:\toccata\p3

script usage: python C:\toccata\p3\minimet4.py <parafile>

please give parameter file name : fed0

Paths to search for parameter file :

['C:\\toccata\\parapath', 'C:\\toccata\\p3', '..', '.',

'C:\\Users\\Richard\\parapath', 'C:\\Users\\Richard']

 fed0

trying to open : C:\toccata\parapath\fed0.txt

C:\toccata\parapath\fed0.txt opened for reading.

c:\toccata\samples\feds\mets

85 files read.

85 items written.

Output listing on : ..\op\minimeta.txt

Results dumped onto: c:\toccata\samples\feds\mets\fedzero.txt

C:\toccata\p3\minimet4.py done on Thu Nov 28 16:06:39 2013

after 0.25 seconds.

This would cause a metafile (fedzero.txt) to be placed on the c:\toccata\samples\feds\mets\ folder.
The first five lines of this file are listed below.

prepath filename producer

c:\toccata\samples\feds\FedPaps\ fedpap01.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap02.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap03.txt Hamilton

c:\toccata\samples\feds\FedPaps\ fedpap04.txt Hamilton

....

You would have to edit this particular file, since it assigns all 85 texts to Hamilton, the majority
author. However, a corrected metafile exists already (fed1.txt) so that isn't necessary in practice. (If
you are interested in exploring the case of the Federalist papers, a spreadsheet is provided
(c:\toccata\samples\feds\metadat\fedcats.xls) that gives the categories of each of the 85 papers.)

Page 24 of 30

Appendix 2 : Parameter Files

Parameters used by toccata9.py. Note that misspelt parameters are silently ignored!

Parameter Default value Function

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

atomize 1 This can be zero or 1. If it is 1, the input texts are tokenized by the
program's built-in tokenizer. Only set this to zero if your files have
already been tokenized, in which case whitespace will be
considered to delimit tokens.

jobname toccata This gives the job a name. Any text string can be the value. It isn't
necessary but it is useful as the jobname will be used as a prefix to
the program's output files, so it can be seen that they form a group.

trainmet [None] This should be the full path specification of a metafile that indicates
the text files that belong to the training corpus.

testmeta [None] This should be the full path specification of a metafile that indicates
the holdout sample. It is optional: if omitted, the program only does
the leave-n-out testing step.

wordonly 0 This should be integer 0 or 1. If it is 1, the tokenizer will ignore input
tokens unless they begin with an alphanumeric character. If it is
zero, all tokens will be considered, even sequences of punctuation
symbols and so on. Unless you're sure the punctuation is original, it
is advisable to set this parameter to 1.

casefold 1 This can be 0 or 1. Zero means that upper and lower case is left as
found on input; 1 means that input texts will have all letters forced
into lower case. (No effect on character sets without upper/lower
case distinction.)

libname docalib_topvocs This should be the name either of one of the supplied classifier
libraries (docalib_deltoid, docalib_keytoks, docalib_maws,
docalib_tokspans, docalib_topvocs or docalib_vote) or a user-
written library. Don't include the .py suffix, as this is appended
automatically by Python.

paraline [None] This is an indirect way of passing parameters to the library, without
having to rewrite the main toccata program. The format is to have
items separated by spaces and to use the equal-sign '=' to separate
the parameter name (left) from the parameter value (right). An
example is
paraline toks2get=48 multivox=2
which would tell the docalib_maws.py module to use the most
discriminatory 48 from the most frequent 96 tokens in the training
corpus. With docalib_topvocs, the only active parameter is
corrmode: corrmode=ra specifies Spearman's rank correlation; any
value other than 'ra' specifies Pearson's r.
(More details below this table.)

postcode 0 If zero, any _posthoc file will be written afresh, if postcode is 1 the
posthoc results will be appended to the existing _posthoc file if it
exists already.

randseed 1789 To ensure repeatability, Python's random number generator is
initialized with this integer value. You can give a different random

Page 25 of 30

seed if you wish.

targvar doctype This should be the name of the column in the metafile(s) containing
the class labels.

dumpfile jobname with
"_dump.dat"
appended

The program dumps a rectangular file of the classification results in
a form that is easy to import into R with the read.delim() function
for further processing. You can send this to a specific named file if
you don't want to use the default name.

listfile jobname with
"_list.txt"
appended

You can give a specific filename for the main output listing if you
don't want it to have the default name.

modsfile jobname with
"_mods.txt"
appended

This refers to a file where the classifier's decision models will be
written.

outpath subfolder "op"
of current
directory

You can send the output to a specified directory if you like.

outfile toccata.txt (on
outpath)

File where information on parameter settings will be written.
(Really only needed for debugging.)

Library parameters given using paraline

Each prewritten library has a small number of internal parameters that can be set to non-standard
values using Toccata's paraline parameter. It is important to note that resetting these values is
optional. I have experimented to find sensible defaults, so the programs should work well without
using paraline to alter the default settings. However, I know that users like to experiment, so brief
descriptions are given below of how to change these values.

_deltoid
Here the only paraline parameter is topterms, which gives the number of (word-) tokens from the
top of the ranked frequency list to employ as marker variables. For example,

paraline topterms=100

would cause the system to use the most frequent 100 words in the training corpus. If this parameter
is absent, or outside the range 8 to 1024, the program will use the square root of the overall
vocabulary size, which is usually a reasonable choice.

_keytoks
This has 2 adjustable parameters, snipsize and topkeys. For example,

paraline snipsize=256 topkeys=64

would tell the system to use snippets of size 256 tokens in its initial frequency/pervasiveness
calculations, and keep the most 64 distinctive positive and negative keys (i.e. up to 128 tokens
altogether) from each category as marker variables. Default snipsize is 115, the size of Shakespeare's
18th sonnet. If topkeys is not given or is outside the range 8 to 256, the square root of the overall
vocabulary size is used.

_maws
This library has 2 adjustable parameters, toks2get and multivox. For example,

Page 26 of 30

paraline toks2get=200 multivox=2

would instruct the system to pick the 400 (200 times 2) most frequent words (by document
frequency) when building a model but retain only the 200 with the most apparent discriminatory
effect, as measured by the variation in their above/below median usage rates across the text
categories -- which can be regarded as a kind of keyness. Default values are toks2get=144
multivox=1.618034.

_tokspans
This module uses parameters snipsize (default 144) as in docalib_keytoks, as well as spansize
(default 3), spanmode (default 1) and topvocs (defaulting to the rounded square root of the
vocabulary size if not given or outside the range 2 to 256). It also has a parameter spanmode (default
1). If spanmode is set to zero, the spans used will be treated as sets rather than tuples. This means
that order is ignored, so that, for instance "of the" is not distinguished from "the of". When
spanmode is zero, tokens within a span will be listed in alphabetic order on output, though this
doesn't affect how they match.

_topvocs
The only adjustable parameter for this library is corrmode, which specifies which type of correlation
to use. For example,

paraline corrmode=pm

would cause the system to use Pearson's product-moment correlation in its similarity calculations.
The default is equivalent to corrmode=ra, which causes the system to employ Spearman's rank
correlation coefficient. In fact, any value other than "ra" (or absence of this parameter) will cause
the system to use Pearson's correlation. However, quite extensive testing suggests that rank
correlation (the default) normally works better.

_vote
This module does have a couple of parameters, flatfrex and rootfrex, but I believe they are best left
as initialized by the software. They will probably disappear if there is an upgrade.

Parameters used by minimet4.py.

Parameter Default value Function

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

corpath [None] Specification of directory where files to be included in metafile
reside.

metazero [None] Full path/file specification of output metafile.

targval 00 Initial value to be given to the target column, normally a class label.

targname doctype Name to be given to the target column.

jobname minimeta This gives the job a name. Any text string can be used. It isn't
necessary for this program.

outpath [Subfolder "op"
of current
directory]

Directory where logging file will be written.

outfile minimeta.txt File where logging information will be written. (Really only needed
for debugging.)

Page 27 of 30

Appendix 3 : Sample Screen Output

Below is roughly what you should expect to see on screen when running toccata9.py, in this case
from the command prompt.

C:\2017>python c:\toccata\p3\toccata9.py

C:\toccata\p3\toccata9.py 9.2 Mon Apr 24 12:42:22 2017

command-line args. = 1

prepath : c:\toccata\p3

working folder: C:\2017

script usage: python C:\toccata\p3\toccata9.py <parafile>

please give parameter file name : magskeys

Paths to search for parameter file :

['C:\\toccata\\parapath', 'C:\\toccata\\p3', '..', '.', 'C:\\Users\\Richard.lounge-

pc\\parapath', 'C:\\Users\\Richard.lounge-pc', 'C:\2017']

 magskeys

trying to open : C:\toccata\parapath\magskeys.txt

C:\toccata\parapath\magskeys.txt opened for reading.

?? Possible problem: no training file specified.

Using metafile c:\toccata\samples\mags\metadat\mag1.txt instead.

['prepath', 'filename', 'doctype']

144

target column name : doctype @ 2

Text types : {'maclearn', 'litling'}

Text-classifier s/w successfully loaded from library :

<module 'docalib_keytoks' from 'C:\\toccata\\p3\\docalib_keytoks.py'>

[Expected to contain definition of class Docadat]

Number of texts = 144

Number of tokens= 41501

Longest = 516 tokens.

Mean size = 288.2

Median size = 277.0

Smallest = 127

litling 75 21110

maclearn 69 20391

reference category : litling

total characters = 267478

snipsize = 115

Number of snippets = 343

255

1 12

2 24

3 36

4 48

.... [several similar lines omitted to save space]

18 216

19 228

20 240

21 252

22 264

unused test cases : []

264 trials.

Confusion matrix :

Truecat = litling maclearn

Predcat : litling 131 0

Predcat : maclearn 0 133

Kappa value = 1.0

Precision (%) by category :

litling 100.0

maclearn 100.0

Recall (%) by category :

litling 100.0

maclearn 100.0

Page 28 of 30

cases = 264

cases with unseen category labels = 0

hits = 264

percent hits = 100.0

proportional reduction in error = 1.0

relative mean pseudo-entropy gain = 0.2618

mean pseudo-spherical score = 0.8292

marginal gain = 1.0

gapscore = 1.0

Main output listed on : C:\toccata\op\mags_list.txt

Parameter settings on : C:\toccata\op\toccata.txt

Export info dumped on : C:\toccata\op\mags_dump.dat

C:\toccata\p3\toccata9.py done on Mon Apr 24 12:42:48 2017

after 4.32817 seconds.

It's nice to have an example of 100% correct classifications. Although these texts are short (median
length 277 word tokens) this content-classification task is obviously easier than most realistic
authorship problems.

Page 29 of 30

Appendix 4 : Writing Your Own Classifier Library

To supply a bespoke classifier to toccata you will have to provide a Python3 module with a class
called Docadat that has at least the class methods listed below. The main program will supply your
module with information through an object called paradat, which contains parameter values, and a
list called doclist, which contains information derived from the texts. (More details below.)

def __init__ (self,paradat,doclist):
 This just creates an object holding the required data and methods. You are advised to copy
the version in docalib_maws to begin with.

def loadpars (self,paradat,sep1=' ',sep2='='):
 This interprets any parameters in paradat.paraline and stores them in self.pars (to avoid
having the library alter values in paradat). Again, you might as well just copy this, and edit it to deal
with any parameters that your system requires.

def makemods (self,paradat,doclist):
 This should create the category models. (In fact it could be a single unified model, but the
calling program still needs it to be called makemods.) In most of the supplied libraries, makemods
calls a method called makemod to create a model for each class one at a time. This seems tidy to
me, but is not the only way.

def modprep (self,paradat):
 This optional method will be called once, if present, before the subsampling process. The
intention is to allow computations (e.g. on the whole training sample in paradat.doclist) which would
be wasteful if repeated on every subsample in the subsampling trials. However, it is important not to
'cheat'; that is, information about the whole training set that should be invisible in the test subsets
should not become available to the training subsets as a result of this method's operation.

def showmods (self,fo=sys.stdout):
 This should be able to print a representation of the classification model/models.

def modsims (self,thisdoc,paradat):
 This is the method that actually compares a document (thisdoc) with all category models
and returns a matching score. Exactly how it achieves that will vary dependent on the technique
implemented. In any case, it will have to return a list of numeric values, as many as there are
categories in the training data (in the same order as in paradat.catlist). These are similarities, so the
higher the value, the more closely that category matches the document. Estimated probabilities
would do fine, though the scores don't have to be probabilities. Nor do they have to be positive. If
your technique naturally produces distances, however, you will have to convert them to similarities
somehow (e.g. as -d or 1/(d+1)).

You may well also have to write various internal service methods, depending on how your technique
works, but the ones above are the necessary ones.

Yes, I admit it is a bit tricky, but the libraries provided are liberally sprinkled with comments, so it
should be possible for an experienced Pythoneer to compose a classifier that will be compatible with
the toccata main program. The two major data structures that you need to know about, which
toccata9.py supplies to the above Docadat methods are doclist and paradat.

Page 30 of 30

doclist
 This is a Python list, whose elements are Sack() objects. Sack is just a generic collection
object. You can assume that each doclist element has the following attributes. (Your program can
alter these, though that is most inadvisable!)

attribute value

dnum unique document id number, typically its metafile position counting from zero

freqtab a dictionary with word-tokens as keys and the frequencies of those word-tokens in the
document as values (yes, that work is done for you!)

name the name of the text file containing the document

outcome the label of that document's category

size the number of word-tokens in toklist

text a space-delimited single string made by concatenating the items in toklist

toklist a list of each (word-)token in the document, computed by my home-brew tokenizer if
atomize=1 (the default) otherwise using white-space as a separator

paradat
 This is a Sack() object which keeps together the main program's operational parameters.
Again, it could be altered by the library methods, but in general that would be inadvisable. The
attributes of paradat that you should be able to rely on are those described in the previous
Appendix, as well as the following. If you run toccata9.py with one of the preexisting libraries and
look at the toccata.txt output file you will see what other attributes might be of interest. Probably
the only ones you'll need are those listed below.

P.S.
I intend to add other library modules from time to time, but toccata9.py is probably the final
numbered release. If I ever write a newer version it will just be toccata.py, and that really will be the
last.

attribute value
catlist a list of the category labels in the training corpus
cats the number of different categories in the training corpus
docs the number of documents in the training set
doclist better not use this directly as it normally contains all training texts, not just the ones in

the current main subsample!

paraline parameters specifically intended for the library, which can be unpacked by loadpars
(into self.pars)

