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TOCCATA : Text-Oriented Computational Classifier Applicable To Authorship 
(User Notes by Richard Forsyth, April 2017) 

 
Toccata is a system for testing text-classification techniques, written in Python3. Essentially the main 
program is a test harness into which a variety of text-classification algorithms can be inserted for 
evaluation on unproblematic cases and, if required, applied to disputed cases. 
 
Why I Wrote this Software 
In the 20+ years since I became interested in computational authorship attribution, I have 
implemented several algorithms to perform text categorization (k-nearest-neighbour, linear 
classifier, naive Bayes, tree-induction, among others) in a variety of programming languages, 
including Basic, C, Python2, Python3, R and Spitbol (an implementation of Snobol4). This left me with 
a motley collection of programs, most of which I can no longer execute due to lack of support 
software, all of which have irritatingly different conventions about input formats and operational 
parameters. 
 
I realized that what I wanted was a generic framework into which I could plug alternative 
classification techniques. That would allow me to evaluate the success of a possibly novel technique 
on a common corpus of documents with undisputed class membership; and, if it appeared 
promising, to apply it to unseen or genuinely problematic cases. 
 
Toccata is the result. (The name stands for: Text-Oriented Computational Classifier Applicable To 
Authorship.) I am making it available to all & sundry as freeware in the GNU sense of 'free' with the 
hope that it will be useful to others, and possibly even lead to paid consultancy -- since software can 
always be improved or extended and there might even be people prepared to pay me to do the 
extending &/or improving. (:-) 
 
As mentioned above, my main motive in writing toccata was to experiment with authorship-
attribution methods, but it can do many other kinds of document categorization as well, e.g. 
classifying by topic or by genre. 
 
The basic concept is that you write a classifier as a Python3 library and run it through the toccata 
main program which tries it out on a test corpus or corpora and calculates a number of evaluation 
measures, as well as classifying a holdout sample if present. Actually, you don't have to write your 
own classifier, since 6 different (simple but quite effective) libraries are supplied so that those who 
don't fancy writing Python code can still use the system for document classification. If you are happy 
to write Python code, these serve as models which you can adapt for your own purposes. 
 
A Sketch of the System's Operation 

Phase Brief Outline 

00. Collect text data. Can't say much about this except that it could take lots of work, and that 
each document should be in a separate (utf8) file and should belong to a specific category. 
Several example corpora are provided to get you started. (Incidentally, data gathering & 
checking is the really crucial part: doing insufficient data validation is a trap into which 
almost everyone has fallen at some time, including me.) 

0a. Download Python (version 3 not 2), if you don't already have it, from www.python.org. This 
is normally quite painless. 

0b. Unpack the toccata.zip file -- into a top-level directory called toccata unless you want to do 
lots of extra editing. 

1a. Create a "metafile" for the training-set of documents. A program called metaget.py is 
provided to help make this process (fairly) easy. More on metafiles below. 

http://www.python.org/
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1b. Optional, but very likely: also create a metafile for a holdout sample of texts, including 
some of uncertain category membership. 

2. Either write your own bespoke text-classifier as a Python3 module, or (more likely at first) 
decide which of the provided library modules, docalib_deltoid, docalib_keytoks, 
docalib_maws, docalib_tokspans, docalib_topvocs or docalib_vote to use. More details 
below. 

3. Prepare a parameter file. This is a file that can be edited, e.g. in Notepad or Notepad++, 
which specifies various settings. Examples of parameter files will be shown below. 

4. Run toccata9.py. (The digit is a version number, so may change as time goes by.) 
This performs three main functions, in sequence: 
(a) testmode: leave-n-out random resampling test of the classifier on the training corpus to 
provide statistics by which the classifier can be evaluated; 
(b) holdout: application of the classifier to an unseen holdout sample of texts, if a test 
metafile is given; 
(c) posthoc: re-application to the holdout sample of texts (if one is given) using the results 
from the testmode phase to estimate empirical probabilities. 
More details below. Note that steps (b) & (c) are optional. Note also that step (c) is frankly 
experimental thus needs to be treated with caution. 

5. Peruse results with care, perhaps exporting the "_dump" file into R or another statistical 
package for further processing. 

 
Phase 00 : Corpus Format 
Toccata is a document-oriented system. Thus a training corpus consists of a number of text files, in 
UTF8 encoding (without markup, such as HTML tags). Each file is treated as an individual document, 
belonging to a particular category. 
 
In the samples folder you will find 6 subfolders (ajps, bottlabs, cics, feds, mags and sonnets). These 
contain datasets that enable you to start using the system, prior to collecting &/or reformatting your 
own corpora. 
 
The first, ajps, contains ninety poems by 2 eminent 19th-century Hungarian poets, Arany József & 
Petőfi Sándor. Arany was godfather to Petőfi's child, so we might expect their writing styles to be 
relatively similar. Also, these poems are short compared to the lengths of documents that are 
typically used in text classification, so represent a challenging problem. 
 
The second, bottlabs, holds approximately 200 texts taken from the back labels of beer, wine and 
soft drinks bottles. It certainly isn't an authorship problem, but it is a useful test case since the texts 
themselves are relatively short. In addition to the three main categories -- beer, soft & wine -- there 
is a misc subfolder with a miscellany of other short text files. Some of these are cider back label 
texts, others from tea or coffee packaging, but some are not related to drinks at all and at least one 
isn't in English. Thus this collection, when trained to distinguish three categories can be used to 
assess how well Toccata deals with "distractors", i.e. texts that do not belong in any of the training 
classes. 
 
The cics subfolder contains writings by several Latin authors, the three main ones being: Marcus 
Tullius Cicero, the famous Roman orator, Mark-Antoine Muret, known as Muretus, and Carlo 
Sigonio. This dataset arises from an interesting authorship problem. Background information can be 
found in Forsyth et al. (1999), but in a nutshell the problem revolves around a work called the 
Consolatio which Cicero wrote in 45 BC. This was thought to have been lost until in 1583 AD when 
Carlo Sigonio claimed to have rediscovered it. He died the following year never having made public 
the manuscript, but published a printed version in Venice with himself named as editor. Scholars 
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have argued since then over whether the book is genuinely a rediscovery of Cicero's lost work or a 
renaissance fake. We will use this dataset as our main example to demonstrate how Toccata works. 
 
The feds subfolder contains writings by Alexander Hamilton and James Madison, as well as some 
contemporaries of theirs. This is related to another notable authorship dispute, concerning the 
Federalist Papers, which were published in New York in 1788. Of the 85 essays in that book, 51 are 
known to have been written by Hamilton, 14 by Madison, 5 by John Jay and 3 jointly by Hamilton 
and Madison together. That left 12 disputed papers (numbers 49-58 and 62-63) claimed by both 
Hamilton and Madison. For more background see Holmes & Forsyth (1995). 
 
The mags subfolder contains data for a content-discrimination problem. It contains 144 texts from 2 
different learned journals, namely Literary & Linguistic Computing and Machine Learning. Each text 
is an excerpt consisting of the Abstract plus initial paragraph of an article in one of those journals, 
written during the period 1987-1995. The classification task is to decide the journal in which the text 
was published. Hence this is not an authorship problem, rather a problem of content discrimination. 
Again the texts are relatively short compared to other examples in this field. 
 
Lastly, the sonnets corpus contains 196 short English poems -- 14 sonnets by each of 14 different 
authors. This is a challenging problem firstly because the median length of each text in the training 
corpus is 116 words, secondly because 14 is a relatively large number of candidates. Hence the 
probability of successful classification by chance is just over 7 percent. There is also a holdout 
sample of 24 texts, absent from the training set. Half of these 24 items are 'distractors', i.e. texts by 
authors not present in the training set; 21 of these holdout texts are sonnets, but 3 are not: Winter 
My Secret, a poem of 239 words by Christina Rossetti; the short poem, They Flee from Me, by 
Thomas Wyatt, and Lincoln's 1863 Gettysburg address, which is the only example not in verse. 
 
Phase 0 : Setting Up 
First you need Python3. If you don't have it already, the latest version can be downloaded and 
installed from the Python website: www.python.org. This is usually quite straightforward. The only 
snag is if you have Python2 and want to keep using it. Then you'll probably have to set up a specific 
command to run whichever version you use less frequently. 
 
Next step is to unpack the toccata.zip file. After unpacking it, preferably into a folder called 
"toccata", you should find the following subfolders. 
 
op 
p3 
parapath 
previous 
samples 
 
The programs are in p3. Sample test corpora will be found in samples. Subfolder op is the default 
location for output files and parapath is a convenient place for storing parameter files, which will be 
explained later. Subfolder previous contains earlier versions of the software. 
 
Phase 1 : Anything You Can Do, I Can Do Meta (;-) 
Sorry, couldn't resist that. 
 
Below is a complete listing of a training metafile for the cics dataset. It has three columns. A metafile 
could have more columns than three, but not less. The top line is a header, giving the column names. 
The first column must be called prepath. It indicates the directory/folder where a particular file 

http://www.python.org/
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resides. The second must be called filename and will contain the file names of each particular text. 
The other column will contain class labels. It can be called anything, though doctype is the default. 
(See details of parameter files, in Phase 3, for alternative ways of indicating the class of a text.) 
Columns are separated by the horizontal tab character. (Code point 9 in ASCII and Unicode/utf8.) 
Each line after the header refers to a separate document. 
 

prepath filename doctype 

c:\toccata\samples\cics\Tullies\ Cicero_Amicitia.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ArchiaPoeta.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Atticus1.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Brutus1.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Brutus2.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Cat2.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_CatoSenectute.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_DeFinibus.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_DeImperio.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_DeInventione2_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_DeLegibus.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_DePartitione_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_InPisonem_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_InVerremII2_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_NaturaDeorum2.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Officiis1.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Orator.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Philippics2.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProCaecina_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProCluentio.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProFlacco_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProMarcello.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProMilone_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProQuinctio_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProSestio_latlib.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProSexto.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_ProSulla.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Rep2.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Somnium.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Tusculan1.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Tusculan2.txt cics 

c:\toccata\samples\cics\neolats\ Muretus_PaulFox.txt muretus 

c:\toccata\samples\cics\neolats\ Muretus_Phil.txt muretus 

c:\toccata\samples\cics\neolats\ Muretus_Pius.txt muretus 

c:\toccata\samples\cics\neolats\ Muretus_Rege.txt muretus 

c:\toccata\samples\cics\neolats\ Muretus_Util.txt muretus 

c:\toccata\samples\cics\neolats\ Sigonio_Elo1.txt sigonio 

c:\toccata\samples\cics\neolats\ Sigonio_Elo2.txt sigonio 

c:\toccata\samples\cics\neolats\ Sigonio_HistIt4a.txt sigonio 

c:\toccata\samples\cics\neolats\ Sigonio_HistIt4b.txt sigonio 

c:\toccata\samples\cics\neolats\ Sigonio_LatLing.txt sigonio 

c:\toccata\samples\cics\neolats\ Sigonio_LaudHist.txt sigonio 
 
This metafile describes a training corpus with 3 categories: 31 texts by Cicero, 5 texts by Muretus 
and 6 texts by Sigonio. Many of these 42 texts are extracts rather than full works. Note that no 
disputed texts are included in the training corpus. Note also that only 5 or 6 training examples is 
much fewer than ideal, so it is optimistic to expect high accuracy in this case; however, in real 
problems we are often forced to compromise. (The program cannot run with fewer than 2 instances 
of each training category.) 
 
There follows a complete listing of holdout3.txt, a testing metafile for this example. This does 
include disputed texts. 
 

prepath filename doctype 

c:\toccata\samples\cics\claslats\ Seneca_Brevit.txt claslats 

c:\toccata\samples\cics\claslats\ Seneca_Cons.txt claslats 
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c:\toccata\samples\cics\claslats\ Seneca_Ira1.txt claslats 

c:\toccata\samples\cics\claslats\ Seneca_Otio.txt claslats 

c:\toccata\samples\cics\claslats\ Seneca_Prov.txt claslats 

c:\toccata\samples\cics\neolats\ Abelard_HistCalamitatum_latlib.txt neolats 

c:\toccata\samples\cics\neolats\ Heloise_Epistola_latlib.txt neolats 

c:\toccata\samples\cics\neolats\ Lauredan_FranVen.txt neolats 

c:\toccata\samples\cics\neolats\ Lauredan_Mant.txt neolats 

c:\toccata\samples\cics\neolats\ Muretus_Ingress.txt muretus 

c:\toccata\samples\cics\neolats\ Muretus_Laud.txt muretus 

c:\toccata\samples\cics\neolats\ Sigonio_Dialogo.txt sigonio 

c:\toccata\samples\cics\Tullies\ Cicero_Philippics7.txt cics 

c:\toccata\samples\cics\Tullies\ Cicero_Tusculan4.txt cics 

c:\toccata\samples\cics\holdout\ ConsolA.txt cons 

c:\toccata\samples\cics\holdout\ ConsolB.txt cons 

c:\toccata\samples\cics\holdout\ EpistulaOct.txt fake 

c:\toccata\samples\cics\holdout\ RhetHerr.txt fake 
 
The last four entries refer to the first and second halves of the 1583 Consolatio, as well as 2 classical 
works, supposedly written by Cicero, which are nowadays taken to be spurious.  Note that none of 
these have a category label seen in the training metafile. There are also several classical and neolatin 
"distractors" as well as one unseen text by Sigonio, 2 by Muretus and 2 by Cicero. As far as this 
holdout sample is concerned, the classifier cannot get more than five of its responses correct. 
However, it is interesting to observe how it handles the distractors. 
 
The format of metafiles is intended to be suitable for manipulation in a spreadsheet package such as 
Excel or OpenOffice/Calc as a tab-delimited worksheet. The idea behind this is to make it possible to 
select a variety of subsets of a larger corpus as training or test texts in different runs of the system, 
without moving files around &/or deleting them. 
 
To make an initial metafile, it is convenient to use the metaget.py program, which is included with 
the distribution. The output of this program can then be edited in a text-editor, such as Notepad++, 
or a spreadsheet until it specifies exactly the desired set of files. Notepad++, a versatile text-editor 
that I personally recommend, can be obtained from the website 
http://notepad-plus-plus.org/ 
free of charge. 
 
The metaget.py program can be run just by double-clicking on its name. It will then display a window 
with four elements: 
 
 Enter next category name: 
 Select file(s): 

Enter output metafile name: 
 Exit & save metafile: 
 
The idea is that you type a category label in the upper box (then click on the Enter button) then 
choose files by picking the second option which will allow the customary ways of navigating the file 
system and selecting files or groups of files. This pair of actions can be repeated several times to 
include files from a number of different categories &/or different folders. Then you provide a 
destination file name and extension for the resulting metafile (again not forgetting to click on the 
Enter button) and quit using the final option. If you do forget to name the output metafile, it will be 
called metazero.txt and placed on the directory from which the program was launched. 
 
Note that entering the category or metafile name does require clicking the Enter button alongside 
the text-entry box to confirm your input; just hitting Carriage-Return won't do, as I have yet to 
master the intricacies of binding a keypress-response procedure to the Return key. (I still write 

http://notepad-plus-plus.org/
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programs as if the 20th century hadn't gone out of fashion, I'm afraid. Nevertheless, I suspect most 
people will find metaget.py somewhat simpler to use than its precursor minimet4.py, though I doubt 
if it will eliminate cases where using a text-editor, such as Notepad++, will still be needed to put a 
nearly-correct metafile into its final form.) 
 
The test problems in the samples subfolder contain several metafiles that you can inspect as 
examples before making your own. 
 
There is also a program, randmets.py, which will take an input metafile and distribute entries at 
random to produce two output metafiles each of which contains a disjoint subset of the input 
metafile entries, randomly chosen. This is useful for producing training and test samples. 
 
Phase 2 : Library Modules 
Here we just consider the libraries provided with the system. For those dauntless spirits who enjoy 
writing modules in Python3, Appendix 4 gives much fuller details of what a library should provide for 
the toccata9.py program (essentially a class called Docadat which includes a number of required 
methods that create and employ a list called modinfo of models for each category) and what data 
structures the toccata9.py program makes readable to the methods in that class (essentially a list 
called doclist, containing details of each text, and an object called paradat which holds the main 
program's parameter values). Somehow or other, each module must be capable of computing a 
matching score between any text and a category model. This score should be higher, more positive, 
the more closely the text matches the model. (It does not need to be proportional to a probability.) 
 
Realistically, however, there is no need for such efforts, certainly not to begin with, since 6 library 
modules exist already "off the shelf", to get you started: 
docalib_deltoid, docalib_keytoks, docalib_maws.py, docalib_tokspans.py, docalib_topvocs.py and 
docalib_vote. 
 
docalib_deltoid.py 
This module is an implementation of Burrows's delta (Burrows, 2002) which has become a standard 
technique in authorship attribution studies. In a nutshell, this method first finds the most frequent N 
word tokens in the corpus; then computes the standard deviations of the relative usage rates of 
these words across the various documents of the corpus. This allows it to consider the mean usage 
rates of these words in each category as a model of that class. To compare a single text with a class 
model, it computes the absolute z-scores of all N words and averages them, a z-score being 
computed by subtracting the usage rate of the word under consideration in the text from the mean 
rate in the class model and dividing this difference (ignoring sign) by the standard deviation of that 
word in the corpus as a whole. This process yields a mean absolute z-score, which is a dissimilarity 
measure. Because toccata9.py works with similarities, these mean dissimilarities (di) are converted 
to similarities as reciprocals, i.e. 1.0/di. The number, N, of most-frequent words to employ can be set 
using the paraline parameter (see  Appendix 2) but if this is absent the system sets N to be the 
square root, of the vocabulary size (total different vocabulary items, not total running tokens), 
rounded to an integer, which is usually a reasonable choice. 
 
docalib_keytoks.py  
This is the method that does best on my personal benchmark collection of authorship problems. It 
works by first finding the 1024 most common word tokens in the corpus, then keeping from these 
the most distinctive. Distinctiveness is scored by comparing each class in turn with the aggregate of 
the other classes, using the measure p*q, where p is the proportion of in-class snippets in which the 
token is found and q is 1 minus the proportion of other-class snippets in which the token is found, 
i.e. the proportion in which it isn't found. A snippet is a sonnet-sized sequence of 115 words by 
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default. Having ranked these tokens by this score, the N items from both ends of the ranking list are 
selected, where N can be given by the user but by default is the square root of the total vocabulary 
size, capped at 256. The resultant set of keywords is the union of those picked for each class. For 
classification, the frequencies of these selected keywords in the text being classified are correlated 
(with Spearman's rho by default) with the relative frequencies of these terms in each class. The class 
assigned is that with highest correlation. The method tends to employ quite large numbers of words. 
Perhaps surprisingly, even when correlating several hundred words, many on tied ranks with low 
frequencies such as 0, 1 or 2 in the text being classified, this method gives quite accurate results. 
 
docalib_maws.py  
This contains data and methods inspired by what Mosteller & Wallace (hence MAWS, Mosteller And 
Wallace System) in their classic work (1964/1984) on the disputed Federalist papers call their 
"robust Bayesian analysis". I have slightly revised the software which I wrote originally in my 1995 
thesis (Forsyth, 1995) to automate this approach. Essentially this is a naive Bayesian classifier using 
frequent word tokens. It takes 2 parameters, toks2get and multivox (default values 144 and 
1.618034 respectively) and computes the rounded value of toks2get multiplied by multivox. It then 
takes the resulting number of the most common words in the corpus, according to document 
frequency, and reduces them to toks2get again by discarding the least discriminatory items. Then 
Bayes factors are computed from the training data for each remaining token according to how often 
the relative frequency of that token exceeds the median frequency of that token in the whole 
corpus. 
 
docalib_tokspans.py 
This method attempts to capture some of the information inherent in syllexis, the co-occurrence of 
words in close proximity, and especially sequential co-occurrence. Being primarily aimed at 
authorship attribution it starts, conventionally enough, by finding the most common words in the 
corpus. The number kept can be set by the user but by default is the square root of the vocabulary 
size, rounded to an integer, with an enforced maximum of 1024. Frequency is defined not by gross 
count but by the number of snippets in which a word occurs. Default snippet size is 144 tokens. Thus 
dispersed words that occur throughout the corpus are favoured over "bursty" words that occur 
often but only in few segments. This preliminary word-selection can be considered step 0 of the 
overall procedure, after which follow a further four steps: (1) accumulate; (2) eliminate; (3) 
correlate; (4) discriminate. Steps 1 and 2 constitute the model-building phase; steps 3 and 4 form 
the model-using phase. 
 
Step 1 goes through the texts examining each segment of S consecutive words, where S is a 
parameter called spansize, set by the user. With spansize=3, a reasonable choice, the triplet "by the 
user", for example, would be examined and -- presuming "by" and "the" were in the frequent word 
list but "user" was not -- the tuple ("by","the") would be retained with 1 added to its occurrence 
tally. This typically generates a very large number of token tuples, most of which are shorter than 
spansize in length. In fact, the zero-length tuple is normally one of the most frequent -- implying a 
segment of spansize tokens all absent from the high-frequency list. Most of these tuples are 
winnowed out in step 2. In this step any such tuples occurring in fewer than 2 texts are removed, 
and, more significantly, the tuples are rated by how strongly they are associated with each category, 
with only the most distinctive retained. The default mode of calculating distinctiveness is to compute 
(r1-r2)*sqrt(df), where r1 is the rate in the category under consideration, r2 is the rate in all other 
categories combined and df is the number of documents of the category under consideration in 
which the token occurs. The highest-scoring items in each category are kept. The number to keep for 
each category is the rounded square root of that category's vocabulary size. The lists for each 
category are merged and become a list of distinctive features. In phase 3 this distinctive-feature list 
is used to calculate a correlation coefficient (rank correlation by default) of each test text with each 
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category in the following manner. The frequencies of every distinctive feature in the text under 
consideration, including zero, forms one vector which is correlated with vectors of the total 
frequencies of those features in each category, giving C correlations, where C is the number of 
categories. In step 4, the highest of those correlations is chosen to assign a category to the text 
concerned. 
 
docalib_topvocs.py  
This implements a classifier inspired by the approach of Burrows (1992). It uses the most frequent 
word-tokens in the training corpus as features. The number of most frequent words used in the 
feature list defaults to the (rounded) square root of the vocabulary size of the entire corpus, i.e. of 
the number of distinct word types. To compute a matching score between a text and a model, the 
correlation between the frequencies of the words in the common-word feature list of both the text 
and the model is computed. The user can select either Pearson's r or Spearman's rank correlation 
coefficient. Rank correlation is the default. (Using correlations is what differentiates this technique 
from most classifiers in the Mosteller/Wallace/Burrows tradition.) 
 
docalib_vote.py 
Module docalib_vote.py is exceptional in that it actually uses every single word-type in the training 
corpus as a feature. The 'model' developed for classification consists simply of frequency-tables for 
every text category, containing the frequency of that word in that category. To classify a new text, 
the frequency of every word in that text is counted; then, for each category, a similarity score is 
computed by adding a 'vote' by each word in the text to a running total. The vote is either sqrt(f) or 
0, where f is the frequency of that word in the text being classified , according to whether the word's 
relative frequency is more common in the category concerned than in the corpus as a whole, or not. 
The category yielding the highest total is chosen. This simple procedure was intended merely to 
establish a baseline, but various trials have shown that it works rather well, perhaps because 
information from the whole vocabulary structure is utilized. 
 
Phase 3 : Preparing a Parameter File 
Below is a listing of parameter file cicsvocs.txt which comes with the toccata distribution on the 
parapath folder. 
 
comment  testing with Ciceronian corpus metafile : 

jobname  cicsvocs 

trainmet  c:\toccata\samples\cics\metadat\cictrain.txt 

testmeta  c:\toccata\samples\cics\metadat\holdout3.txt 

wordonly  1 

libname  docalib_topvocs 
 
A parameter file is just a plain text file with one item per line. Each line should begin with the 
parameter name, then 1 or more blank spaces, then the parameter value. The following table 
interprets the above parameter file, line by line. 
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Phase 4 : Running the Main Program! 
When you execute toccata9.py, for example with a command such as that below (shown in bold), 
you should see something like the following lines 
 
C:\2017> python c:\toccata\p3\toccata9.py 

C:\toccata\p3\toccata9.py 9.2 Sat Apr 22 15:03:32 2017 

command-line args. = 1 

prepath : C:\toccata\p3 

working folder:  C:\2017 

script usage:  python C:\toccata\p3\toccata9.py <parafile> 

please give parameter file name : 

 
on the screen. If your parameter file is in the same directory as the program or in toccata's parapath 
subfolder you won't have to give the full path specification, just its name (.txt extension presumed). 
 
More likely, you'll execute the program by double-clicking on toccata9.py in the toccata\p3 folder, 
which should produce a screen something like the example below. 
 

Parameter Default value Function 
comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can 

be used to insert reminders about what the file is meant to do. 
jobname toccata This gives the job a name. Any text string can be the value. It isn't 

necessary but it is useful as the jobname will be used as a prefix to 
the program's output files, so it can be seen that they form a 
group. 

trainmet [None] This should be the full file specification of a metafile that indicates 
the text files that belong to the training corpus. 

testmeta [None] This should be the full file specification of a metafile that indicates 
the holdout sample. It is optional: if omitted, the program only 
does the leave-n-out testing step. 

wordonly 0 This should be integer 0 or 1. If it is 1, the tokenizer will ignore 
tokens unless they begin with an alphanumeric character. If it is 
zero, all tokens will be considered, even sequences of punctuation 
symbols and so on. Since punctuation of works authored by Cicero 
was definitely not Cicero's, it is set to 1 here. 

libname docalib_topvocs This should be the name either of one of the supplied classifier 
libraries (e.g. docalib_deltoid, docalib_keytoks, docalib_maws.py, 
docalib_tokspans, docalib_topvocs.py or docalib_vote) or a user-
written library. Don't include the .py suffix, as this is appended 
automatically by Python. 
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Here the program has reached the point where the user is just about to press Return to select the 
cicsvocs parameter file. After pressing Return, various intermediate results will appear on screen, 
ending with something resembling the display shown below. 
 

 
 
Using this parameter file, cicsvocs.txt, shown in the previous section on the cics dataset produces 
five output files. The most important will normally have a name composed of the jobname, then 
"_list", with .txt extension. A listing of the output file cicsvocs_list.txt is shown below. (The other 
output files include a dump of data that could be exported into R or a comparable statistical 
package. More on them later.) 
 
dateline  Sat Apr 22 14:58:18 2017 

id        C:\toccata\parapath\cicsvocs.txt 

libname   docalib_topvocs 

progname  C:\toccata\p3\toccata9.py 
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targvar   doctype 

testmeta  c:\toccata\samples\cics\metadat\holdout3.txt 

trainmet  c:\toccata\samples\cics\metadat\cictrain.txt 

 

 

==== Subsampling trial : 

 

rank   weight  filename                          pred:true        predval  meanrest 

   1   0.3115  Cicero_Philippics2.txt           cics + cics         0.7923   0.4808 

   2   0.3066  Cicero_Brutus1.txt               cics + cics         0.7230   0.4164 

   3   0.2799  Cicero_Brutus2.txt               cics + cics         0.7650   0.4851 

   4   0.2316  Cicero_Atticus1.txt              cics + cics         0.7841   0.5525 

   5   0.2197  Cicero_ProQuinctio_latlib.       cics + cics         0.7062   0.4865 

   6   0.1942  Cicero_InPisonem_latlib.tx       cics + cics         0.6734   0.4792 

   7   0.1885  Cicero_ProFlacco_latlib.tx       cics + cics         0.7126   0.5241 

   8   0.1881  Cicero_CatoSenectute.txt         cics + cics         0.7463   0.5581 

   9   0.1727  Cicero_ProCaecina_latlib.t       cics + cics         0.7446   0.5719 

  10   0.1720  Cicero_ProMarcello.txt           cics + cics         0.6793   0.5073 

  11   0.1683  Cicero_ProSulla.txt              cics + cics         0.6660   0.4977 

  12   0.1603  Sigonio_LaudHist.txt          sigonio + sigonio      0.7204   0.5602 

  13   0.1562  Sigonio_LatLing.txt           sigonio + sigonio      0.7550   0.5988 

  14   0.1541  Cicero_DeLegibus.txt             cics + cics         0.7782   0.6241 

  15   0.1539  Cicero_ProMilone_latlib.tx       cics + cics         0.5992   0.4453 

  16   0.1450  Cicero_Tusculan2.txt             cics + cics         0.7411   0.5961 

  17   0.1407  Cicero_Amicitia.txt              cics + cics         0.7643   0.6236 

  18   0.1316  Cicero_DeInventione2_latli    sigonio - cics         0.5994   0.4679 

  19   0.1311  Sigonio_Elo1.txt              sigonio + sigonio      0.7060   0.5748 

  20   0.1155  Cicero_InVerremII2_latlib.       cics + cics         0.7444   0.6289 

  21   0.0957  Muretus_Pius.txt              muretus + muretus      0.6925   0.5967 

  22   0.0912  Muretus_PaulFox.txt           muretus + muretus      0.6949   0.6037 

  23   0.0899  Sigonio_Elo2.txt              sigonio + sigonio      0.6561   0.5662 

  24   0.0895  Muretus_Phil.txt              sigonio - muretus      0.6788   0.5893 

  25   0.0880  Cicero_Tusculan1.txt             cics + cics         0.7099   0.6218 

  26   0.0860  Cicero_ProSexto.txt              cics + cics         0.6524   0.5663 

  27   0.0852  Muretus_Rege.txt              muretus + muretus      0.6265   0.5413 

  28   0.0845  Cicero_DePartitione_latlib       cics + cics         0.5574   0.4728 

  29   0.0777  Cicero_DeFinibus.txt             cics + cics         0.6915   0.6138 

  30   0.0754  Cicero_Orator.txt                cics + cics         0.6474   0.5719 

  31   0.0584  Cicero_Officiis1.txt          sigonio - cics         0.6745   0.6161 

  32   0.0581  Cicero_ProSestio_latlib.tx       cics + cics         0.6139   0.5558 

  33   0.0581  Cicero_Somnium.txt               cics + cics         0.5967   0.5386 

  34   0.0578  Muretus_Util.txt              muretus + muretus      0.7062   0.6484 

  35   0.0554  Sigonio_HistIt4b.txt          sigonio + sigonio      0.6167   0.5613 

  36   0.0514  Cicero_ProCluentio.txt           cics + cics         0.6068   0.5554 

  37   0.0494  Sigonio_HistIt4a.txt          sigonio + sigonio      0.6154   0.5660 

  38   0.0283  Cicero_ArchiaPoeta.txt        sigonio - cics         0.6859   0.6576 

  39   0.0239  Cicero_Cat2.txt               sigonio - cics         0.5642   0.5404 

  40   0.0231  Cicero_Rep2.txt               sigonio - cics         0.5948   0.5718 

  41   0.0175  Cicero_DeImperio.txt             cics + cics         0.6430   0.6255 

  42   0.0167  Cicero_NaturaDeorum2.txt      sigonio - cics         0.6543   0.6376 

+++++++++++++++++-+++++-++++++-++++++---+- 

 

Confusion matrix : 

 

Truecat =            cics muretus sigonio 

Predcat : cics        159       0       2 

Predcat : muretus       2      25       7 

Predcat : sigonio      26       6      31 

 

Kappa value =  0.6595 

Precision (%) by category : 

cics        98.7578 

muretus     73.5294 

sigonio     49.2063 

Recall (%) by category : 

cics        85.0267 

muretus     80.6452 

sigonio     77.5 
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cases = 258 

cases with unseen category labels = 0 

hits =  215 

percent hits = 83.33 

proportional reduction in error = 0.5314 

relative mean pseudo-entropy gain = 0.1034 

mean pseudo-spherical score =  0.6441 

marginal gain = 0.9174 

gapscore = 0.9092 

 

==== Holdout trial : 

 

rank   weight  filename                          pred:true        predval  meanrest 

   1   0.1472  Cicero_Philippics7.txt           cics + cics         0.6350   0.4878 

   2   0.1458  EpistulaOct.txt                  cics ? fake         0.5916   0.4459 

   3   0.1297  Muretus_Ingress.txt           muretus + muretus      0.6642   0.5345 

   4   0.1200  Lauredan_FranVen.txt          sigonio ? neolats      0.7536   0.6336 

   5   0.0908  Muretus_Laud.txt              muretus + muretus      0.7261   0.6353 

   6   0.0740  Lauredan_Mant.txt             sigonio ? neolats      0.6927   0.6187 

   7   0.0586  Sigonio_Dialogo.txt           sigonio + sigonio      0.6864   0.6278 

   8   0.0558  Cicero_Tusculan4.txt             cics + cics         0.6935   0.6377 

   9   0.0502  Seneca_Ira1.txt                  cics ? claslats     0.4870   0.4368 

  10   0.0457  ConsolA.txt                   muretus ? cons         0.6425   0.5968 

  11   0.0421  Seneca_Prov.txt               muretus ? claslats     0.5401   0.4980 

  12   0.0418  Seneca_Otio.txt               sigonio ? claslats     0.5546   0.5128 

  13   0.0413  RhetHerr.txt                     cics ? fake         0.4671   0.4258 

  14   0.0395  Seneca_Brevit.txt                cics ? claslats     0.6248   0.5853 

  15   0.0363  Seneca_Cons.txt               muretus ? claslats     0.6000   0.5638 

  16   0.0318  ConsolB.txt                   muretus ? cons         0.6682   0.6363 

  17   0.0199  Abelard_HistCalamitatum_la    sigonio ? neolats      0.5482   0.5282 

  18   0.0181  Heloise_Epistola_latlib.tx    muretus ? neolats      0.5242   0.5061 

+?+?+?++?????????? 

 

Confusion matrix : 

 

Truecat =              cics claslats     cons     fake  muretus  neolats  sigonio 

Predcat : cics            2        2        0        2        0        0        0 

Predcat : claslats        0        0        0        0        0        0        0 

Predcat : cons            0        0        0        0        0        0        0 

Predcat : fake            0        0        0        0        0        0        0 

Predcat : muretus         0        2        2        0        2        1        0 

Predcat : neolats         0        0        0        0        0        0        0 

Predcat : sigonio         0        1        0        0        0        3        1 

 

Kappa value =  1.0 

Precision (%) by category : 

cics        33.3333 

muretus     28.5714 

sigonio     20.0 

Recall (%) by category : 

cics        100.0 

claslats    0.0 

cons        0.0 

fake        0.0 

muretus     100.0 

neolats     0.0 

sigonio     100.0 

 

cases = 18 

cases with unseen category labels = 13 

cases with known category labels = 5 

[results below, till '*', only apply to these 5 cases] 

hits =  5 

percent hits = 100.0 

proportional reduction in error = 1.0 

relative mean pseudo-entropy gain = 0.0925 

mean pseudo-spherical score =  0.6369 
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marginal gain = 0.8282 

gapscore = 1.0 

* 

 

==== Posthoc ranking : 

 

rank credence filename                          pred:true      confidence congruity 

   1   0.6749  Lauredan_FranVen.txt          sigonio ? neolats      0.4981   0.9146 

   2   0.5783  Muretus_Laud.txt              muretus + muretus      0.3398   0.9844 

   3   0.4304  Muretus_Ingress.txt           muretus + muretus      0.5154   0.3594 

   4   0.4062  Cicero_Philippics7.txt           cics + cics         0.5907   0.2793 

   5   0.3843  Lauredan_Mant.txt             sigonio ? neolats      0.2471   0.5976 

   6   0.3293  Sigonio_Dialogo.txt           sigonio + sigonio      0.1815   0.5976 

   7   0.2972  Cicero_Tusculan4.txt             cics + cics         0.1544   0.5718 

   8   0.2650  EpistulaOct.txt                  cics ? fake         0.5869   0.1197 

   9   0.1479  ConsolB.txt                   muretus ? cons         0.0560   0.3906 

  10   0.1468  ConsolA.txt                   muretus ? cons         0.0811   0.2656 

  11   0.1371  Seneca_Brevit.txt                cics ? claslats     0.0714   0.2633 

  12   0.0885  Seneca_Otio.txt               sigonio ? claslats     0.0714   0.1098 

  13   0.0546  Seneca_Cons.txt               muretus ? claslats     0.0637   0.0469 

  14   0.0385  Abelard_HistCalamitatum_la    sigonio ? neolats      0.0135   0.1098 

  15   0.0334  Seneca_Prov.txt               muretus ? claslats     0.0714   0.0156 

  16   0.0163  Seneca_Ira1.txt                  cics ? claslats     0.1004   0.0027 

  17   0.0138  RhetHerr.txt                     cics ? fake         0.0714   0.0027 

  18   0.0135  Heloise_Epistola_latlib.tx    muretus ? neolats      0.0116   0.0156 

?+++?++??????????? 

 

The first few lines of this output simply echo some of the more important parameter settings from 
the input parameter file (cicsvocs.txt on the distribution). The rest of the output can be divided into 
three sections, delimited by the lines 
 
==== Subsampling trial : 
==== Holdout trial : 
==== Posthoc ranking : 
 
which mark results from the three phases of the program. 
 
The first block (after a few header lines for identification purposes) displays the results of the 
subsampling trial. This takes the training corpus identified by trainmet and repeatedly splits it into 2 
portions of size N and M. M is the rounded square root of the total number of texts in the training 
corpus and N is that total minus M, e.g. with 42 training files N will equal 36 and M will be 6. In each 
cycle, M texts will be picked at random and a 'model' formed on the remaining N cases. Then that 
model will be used to predict the categories of each of the M texts absent from the model-building 
procedure and the results recorded. This subsampling process continues until the total number of 
predictions made is at least 255. In the example above, that resulted in a total of 258 decisions. Only 
the first 42 of these are listed in detail, since there are only 42 individual files, but the confusion 
matrix and summary evaluation data is based on all 258 decisions. 
 
Note that these 42 cases have been sorted in descending order of the column labelled "weight". This 
value is computed by simply taking the maximum model-match score and subtracting from it the 
arithmetic mean of all the other matching scores. The higher this value the more clearly the 
predicted category's matching score exceeds that of the other categories. Thus items near the top of 
this list should indicate more confident decisions than those near the bottom, and we would expect 
more correct answers (marked with '+') near the top and more incorrect decisions (marked with '-') 
near the bottom. 
 
The line 
+++++++++++++++++-+++++-++++++-++++++---+- 
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that ends this list is just a string of these markers concatenated in order left to right from higher to 
lower. As expected, plus signs are more frequent towards the left side. 
 
If there is a testmeta file, as there is in the above example, the next 2 blocks apply the models 
created from the training data to the holdout sample in 2 subtly different ways -- first as individual 
cases, i.e. just as in the subsampling phase, next with reference to the subsampling results as a 
whole, i.e. by trying to assess the extremity of each score in comparison with the scores obtained in 
phase 1. See next section.... 
 
Phase 5 : Interpreting the Output 
In step (a) the program makes 258 decisions. It computes a matching score between each text and 
the category models (ensuring by subsampling that each case's data is excluded from its own 
category model) and, since the true category is known, considers the decision a success if the 
highest matching score is that of the true category. 
 
At the foot of the subsampling block are evaluative statistics, not just raw success percentage, but a 
summary of the categorical decisions including a complete confusion matrix, which allows 
computation of recall and precision in each category. 
 
There are also several other measures designed to assess the quality of the classification process. 
The Kappa value is Cohen's kappa, a multi-class index of agreement, computed according to the 
formula given in Siegel & Castellan (1988). There is also a proportional reduction in error measure, 
indicating how much the error rate is less than guessing based on the frequencies in each category. 
 
The above measures are based on discrete outcomes, i.e. the integer number of correct or incorrect 
decisions. Some continuous indices are also printed. Arguably, these are more sensitive than 
measures based on whole numbers, as they are influenced by how much the correct category is 
rated above or below the other categories. The relative reduction in entropy and "spherical score" 
strictly only apply when the matching scores given to each category are intended as probabilities, 
thus only with docalib_maws among the supplied modules. However, rather than suppress them, 
the program makes an attempt to convert similarities to probabilities and attaches the prefix 
"pseudo-" to the entropy gain and spherical score. The latter is computed as pc / √∑(pi^2) where pi is 
the probability or pseudo-probability of each category and pc is the probability or pseudo-probability 
of the correct category. 
 
More robust measures are "marginal gain" and "gapscore". Marginal gain is computed as goodgaps / 
allgaps where goodgaps is the sum of the differences between the similarity score of the system's 
chosen category and the mean similarities of the non-chosen categories in those cases where it was 
correct, and allgaps is the sum of these differences for all cases. Gapscore is intended as a 
parametric analogue of the proportional reduction in error statistic. The system records three values 
for each decision, the maximum similarity score, the mean similarity score and the similarity score 
assigned to the correct category. These are summed over all decisions as maxsum, meansum and 
truesum. Gapscore is then computed as 
gapscore = (truesum - meansum) / ((maxsum - meansum)+tiny), 
where tiny is 10 to the power of -16, just to avoid division by zero in degenerate cases such as when 
all scores are equal. A score of 1.0 will be attained if maxsum equals truesum, which happens if the 
system always assigns highest similarity to the correct category. 
 
The next block, beginning "====Holdout trial :", does essentially the same with the holdout sample, 
if one has been given. The confusion matrix may contain columns for categories not present in the 
training data, as in this case, where we have several 'distractors'. The program cannot determine 
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whether it made a right or wrong decision in such cases, so they are marked with a question mark 
("?"). Thus the line at the foot of this list of results 
+?+?+?++?????????? 

indicates that the program could only make five definite decisions -- all correct as it happens and all 
in the left-hand half. (Would you expect me to pick a poor example?) 
 
The third block, beginning "====Posthoc ranking :", is in my view the most interesting, but needs to 
be treated with caution. To illustrate, consider the results in this holdout sample, reproduced below. 
 

==== Posthoc ranking : 

 

rank credence filename                          pred:true      confidence congruity 

   1   0.6749  Lauredan_FranVen.txt          sigonio ? neolats      0.4981   0.9146 

   2   0.5783  Muretus_Laud.txt              muretus + muretus      0.3398   0.9844 

   3   0.4304  Muretus_Ingress.txt           muretus + muretus      0.5154   0.3594 

   4   0.4062  Cicero_Philippics7.txt           cics + cics         0.5907   0.2793 

   5   0.3843  Lauredan_Mant.txt             sigonio ? neolats      0.2471   0.5976 

   6   0.3293  Sigonio_Dialogo.txt           sigonio + sigonio      0.1815   0.5976 

   7   0.2972  Cicero_Tusculan4.txt             cics + cics         0.1544   0.5718 

   8   0.2650  EpistulaOct.txt                  cics ? fake         0.5869   0.1197 

   9   0.1479  ConsolB.txt                   muretus ? cons         0.0560   0.3906 

  10   0.1468  ConsolA.txt                   muretus ? cons         0.0811   0.2656 

  11   0.1371  Seneca_Brevit.txt                cics ? claslats     0.0714   0.2633 

  12   0.0885  Seneca_Otio.txt               sigonio ? claslats     0.0714   0.1098 

  13   0.0546  Seneca_Cons.txt               muretus ? claslats     0.0637   0.0469 

  14   0.0385  Abelard_HistCalamitatum_la    sigonio ? neolats      0.0135   0.1098 

  15   0.0334  Seneca_Prov.txt               muretus ? claslats     0.0714   0.0156 

  16   0.0163  Seneca_Ira1.txt                  cics ? claslats     0.1004   0.0027 

  17   0.0138  RhetHerr.txt                     cics ? fake         0.0714   0.0027 

  18   0.0135  Heloise_Epistola_latlib.tx    muretus ? neolats      0.0116   0.0156 

?+++?++??????????? 

 

Here we have results from 18 cases unseen in the training phase, of which 11 are distractors, five are 
of known authorship and 2 (ConsolA and ConsolB) are the first and second halves of the purported 
Consolatio Ciceronis -- the item whose questioned authorship motivated the collection of all this 
data. 
 
The listing ranks the program's holdout decisions from most to least credible. The upper half 
includes all five correct assignments and four distractors. The lower half contains no correct 
answers, just nine distractors. 
 
This output addresses the very real problem of documents from outside the known training 
categories. The listing is ordered by a quantity labelled "credence". This is simply the geometric 
mean of the last two numbers in each line, labelled "confidence" and "congruity". Confidence is 
derived from the preceding subsampling phase. To be specific, if W is the number of correct 
decisions with lower difference scores (labelled "weight" in the output listing) during the 
subsampling phase and L is the number of incorrect decisions with lower difference scores during 
that phase, then "confidence" is (W+L/2+0.5) / (S+1), where S is the number of subsampling trials. 
Congruity is computed as (0.5 + B) / (S+1), where B is the number of cases during the S subsampling 
trials in which items of the class selected had a lower similarity score to their own class model than 
that of the present instance. Thus congruity uses the randomized trials to estimate the empirical 
strength of similarity of the present case to its assigned category, while confidence estimates how 
the gap between the chosen category and the rest compares with those encountered during those 
trials. 
 
This is an important aspect of the software. In text-classification, as with all kinds of classification, 
the problem of never-before-seen categories can loom large. (See, for instance, Eder, 2013.) Like 
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most trainable classifiers, Toccata always picks the most likely category from those it has 
encountered in training, but the most likely may not be very likely; and accurately estimating just 
how likely, in a completely open set, is actually impossible. The confidence and congruity scores give 
useful information in this regard. For example, all the bottom half (9 decisions) have both confidence 
and congruity scores less than 0.5, and none is correct. (We know that Muretus didn't write the 
Consolatio.) The list is shown in descending order. Satisfyingly, all the correct answers come in the 
upper half. 
 
Incidentally, two of the queried decisions in the top half of this list, at ranks 1 and 5, are cases in 
which the program categorized texts by Lauredanus as being by Sigonio. Lauredanus, pen name of 
Bernardino de Loredan, was Carlo Sigonio's student. In other words the system confused the pupil 
with his teacher. Given that it had no training examples of Lauredanus, this would seem a near-miss 
rather than an outright mistake. 
 
There is no absolute answer to the "none-of-the-above" problem, but these indications should be 
helpful to the human user, who will normally be using this sort of program in an exploratory context. 
Ultimately it will always be a matter of human judgement. My hope is that toccata can assist such 
judgements. 
 
This is well illustrated by the following posthoc listing of the holdout data from the sonnets sample. 
 

==== Posthoc ranking : 

 

rank credence  filename                          pred:true     confidence congruity 

   1   0.7685  ChrRoss_WinterSecret.txt      ChrRoss + ChrRoss      0.6704   0.8810 

   2   0.7281  WilShak_6.txt                 WilShak + WilShak      0.6498   0.8158 

   3   0.6534  DylThom_Altar09.txt           EdnMill ? DylThom      0.5693   0.7500 

   4   0.6298  MicDray_Idea000.txt           MicDray + MicDray      0.4307   0.9211 

   5   0.6038  WilShak_137.txt               WilShak + WilShak      0.5131   0.7105 

   6   0.5624  JohDonn_Nativity.txt          JohDonn + JohDonn      0.4401   0.7188 

   7   0.5175  MicDray_Idea048.txt           JohDonn - MicDray      0.3727   0.7188 

   8   0.4509  DylThom_Altar05.txt           RupBroo ? DylThom      0.3090   0.6579 

   9   0.4424  WilShak_109.txt               WilShak + WilShak      0.3914   0.5000 

  10   0.3989  TomWyat_THEY_FLEE_FROM_ME.    EdmSpen ? ThoWyat      0.3333   0.4773 

  11   0.3923  PerShel_Ozymandias.txt        EliBrow ? PerShel      0.1910   0.8056 

  12   0.3740  EliBrow_SP23.txt              DanRoss - EliBrow      0.1929   0.7250 

  13   0.2851  WilShak_RomeoJuliet.txt       WilShak + WilShak      0.1816   0.4474 

  14   0.2699  PhiSidn_astel108.txt          EliBrow - PhiSidn      0.1049   0.6944 

  15   0.2600  DylThom_Altar06.txt           EliBrow ? DylThom      0.0974   0.6944 

  16   0.2248  JohDonn_Temple.txt            EdnMill - JohDonn      0.1142   0.4423 

  17   0.2024  Lincoln1863Gettysburg.txt     SamDani ? AbeLinc      0.0655   0.6250 

  18   0.1903  RicFors_LaBocca.txt           RupBroo ? RicFors      0.0655   0.5526 

  19   0.1530  HelFors_1958.txt              EliBrow ? HelFors      0.0337   0.6944 

  20   0.1262  oxford_13.txt                 WilWord ? Oxford       0.0356   0.4474 

  21   0.1079  RicFors_Underworld.txt        EdnMill ? RicFors      0.0318   0.3654 

  22   0.0830  HelFors_1982.txt              DanRoss ? HelFors      0.0131   0.5250 

  23   0.0579  DylThom_Altar03.txt           RupBroo ? DylThom      0.0075   0.4474 

  24   0.0345  PhiSidn_astel030.txt          EdmSpen - PhiSidn      0.0075   0.1591 

++?+++-?+??-+-?-???????- 

 
In this sample only half, 12 out of 24, of the texts come from the 14 categories in the training data. 
The other 12 are "distractors". Ranking by "credence" has done the job it is meant to do. In the 
upper half of the listing are 6 correct answers, 4 distractors and 2 mistakes; the lower half contains 1 
correct answer, 8 distractors and 3 mistakes. 
 
A graph, plotting these items in the dimensions of congruity and confidence, gives a visual 
impression of this result. In this plot correct decisions are coloured green, mistakes black and 
distractors red. 
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The upper right quadrant contains five correct decisions and one distractor. The lower left quadrant 
contains two correct decisions two mistakes and six distractors. In this example, confidence appears 
to be more informative than congruity, though this isn't always true. 
 
Given that the median length of these texts is less than 120 words, that chance success would be 1 
in 14, and that the training data for each known author consists of only about 1600 words, the 
system has done well to place 6 of the 7 correct answers in the upper half of its ranking and 8 of the 
12 distractors in the lower half. 
 
Mosteller and Wallace in 1964 faced a situation in which the true author had to be one of Hamilton 
or Madison, but this kind of problem, with a small finite set of known candidate authors, is quite a 
rare luxury. More realistically, there is always some degree of uncertainty about whether the 
putative list of candidates does indeed include the true author. The possibility of joint authorship 
raises essentially the same issue. For instance, it is conceivable that Lauredanus assisted Sigonio in 
composing the 1583 Consolatio, in which case we wouldn't expect it to be very similar to works 
written by Sigonio alone. 
 
In some situations, a decision-maker is free to give "none of the above" as a response, in which case 
the posthoc ranking is genuinely valuable, since it allows dubious decisions to be avoided. However 
if a firm decision must be made in every case, then this doesn't help. (For fuller discussion of this 
issue, see Eder (2013).) 
 
There's more .... 
Running toccata9.py will produce a number of output files. The main listing (normally with base 
name ending "_list") is what has just been discussed. Two others will by default have base names 
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ending with "_dump", "_mods". There will also be a file, simply called toccata.txt by default, with 
information of the system's parameter settings. 
 
The _dump file is a tab-delimited .dat file intended to be imported into R for various statistical 
analyses. (It could also be imported into Excel, Minitab, SPSS et cetera.) To illustrate the format, the 
first five lines of the _dump file fedsvocs_dump.dat, which was produced by running toccata on the 
Federalist data, are listed below. 
 
mode ok textnum filename predcat truecat Hamilton

 Madison 

testmode  + 3 fedpap08.txt Hamilton Hamilton 0.8535487 0.8365055 

testmode  + 4 fedpap09.txt Hamilton Hamilton 0.8062115 0.7492547 

testmode  + 28 fedpap36.txt Hamilton Hamilton 0.8466486 0.7153315 

testmode  + 31 fedpap39.txt Madison Madison 0.6426143 0.7654597 

.... 

 
Essentially this file contains the results from all phases of the program (subsampling always, as well 
as holdout and posthoc, if a testmeta file is given) in a rectangular format that is acceptable to many 
statistical packages. The idea is that it allows further analyses, &/or graphical displays. 
 
Additionally, if a holdout sample is given, the program will produce a file of the same name as the 
_dump file, with _posthoc appended. This contains a tab-delimited version of the posthoc ranking, 
suitable for export to R and similar packages. 
 
And still more .... 
As well as the _dump file, toccata9.py will produce a _mods output file. This contains the models 
generated from the whole training corpus, i.e. the models used to classify texts in the holdout and 
posthoc phases. Different methods will have models with different structures, so models from the 
four supplied libraries don't look the same. Yours, if you write a library module, will doubtless be 
different again. So there is no general guide to interpreting such models. Nevertheless, they usually 
will contain useful information. For instance, the model produced by running the docalib_maws.py 
library on the federalist corpus is, in effect, a keyword listing. Its first 7 entries are listed below. 
 

classes = 2 

docs = 64 64 

vocsize = 96 

48 

 

id        toks2get=48 multivox=2 

multivox  2 

slug      2.0 

toks2get  48 

toksort   1 

 

 

docfreq   63 

hibayes   [0.37037037037037035, 0.8888888888888888] 

highvals  [18, 14] 

id        42 

item      on 

lobayes   [0.6296296296296297, 0.1111111111111111] 

lowvals   [32, 0] 

midrate   0.0038 

newquay   0.2593 

 

docfreq   60 

hibayes   [0.6296296296296297, 0.1111111111111111] 

highvals  [32, 0] 

id        60 

item      there 
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lobayes   [0.37037037037037035, 0.8888888888888888] 

lowvals   [18, 14] 

midrate   0.0025 

newquay   0.2593 

 

docfreq   53 

hibayes   [0.6296296296296297, 0.1111111111111111] 

highvals  [32, 0] 

id        93 

item      upon 

lobayes   [0.37037037037037035, 0.8888888888888888] 

lowvals   [18, 14] 

midrate   0.0025 

newquay   0.2593 

 

docfreq   64 

hibayes   [0.6111111111111112, 0.16666666666666666] 

highvals  [31, 1] 

id        1 

item      to 

lobayes   [0.3888888888888889, 0.8333333333333334] 

lowvals   [19, 13] 

midrate   0.0386 

newquay   0.2222 

 

docfreq   64 

hibayes   [0.6111111111111112, 0.16666666666666666] 

highvals  [31, 1] 

id        11 

item      at 

lobayes   [0.3888888888888889, 0.8333333333333334] 

lowvals   [19, 13] 

midrate   0.0028 

newquay   0.2222 

 

docfreq   64 

hibayes   [0.3888888888888889, 0.8333333333333334] 

highvals  [19, 13] 

id        22 

item      and 

lobayes   [0.6111111111111112, 0.16666666666666666] 

lowvals   [31, 1] 

midrate   0.0245 

newquay   0.2222 

 

docfreq   64 

hibayes   [0.4074074074074074, 0.7777777777777778] 

highvals  [20, 12] 

id        9 

item      by 

lobayes   [0.5925925925925926, 0.2222222222222222] 

lowvals   [30, 2] 

midrate   0.0081 

newquay   0.1852 

 
This shows that the highest-ranked, most discriminatory, words for these 2 authors are: on, there, 
upon, to, at, and & by. If we look at the information associated with "to", we find that 31 of 
Hamilton's papers used "to" at a higher rate than the median for all 64 papers (3.86%) while in only 
1 of Madison's 14 undisputed papers was "to" used with more than this relative frequency. If 
somebody writes and asks me to explain this in more detail, I might possibly agree. 
 
It remains to point out that the toccata.txt file contains a list of all the program parameters and their 
values. Normally there is no need to look at this, but if a trial gives strange results it is sometimes 
useful to have a record of program settings. 
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Finally, is perhaps worth noting that using the same metafile as both trainmet and testmeta can 
sometimes be useful. From a strict classification point of view this is a kind of cheating, but the 
resulting holdout and posthoc listings may be informative. In effect they rank the texts by typicality. 
Thus they can be used to identify texts that are typical of their class (ranked near the top of the list) 
and those that are anomalous (ranked near the bottom) -- at least within the universe of discourse 
defined by the corpus as a whole. 
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Appendix 1 : Metafiles 
 
A metafile is a kind of data dictionary. It specifies which text files to work on, and may link associated 
data with each file. The main point is that metafiles can be read into a spreadsheet program such as 
Excel, modified, then written back out again to guide further processing (without necessarily 
rearranging a large collection of documents on disc). Another point to note is that all the software 
described herein assumes that the first 2 columns of a metafile are called "prepath" and "filename" 
and contain the file path then the file name. Columns within a metafile are delimited by the 
horizontal tab character. The toccata9.py program also needs a third column, called "doctype" by 
default. 
 
The first line of a metafile is treated as a header, giving column names. 
 
As an example, the Federalist training metafile (c:\toccata\samples\feds\mets\fed1.txt) is listed 
below. 
 
prepath filename producer 

c:\toccata\samples\feds\FedPaps\ fedpap01.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap06.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap07.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap08.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap09.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap10.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap11.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap12.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap13.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap14.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap15.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap16.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap17.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap21.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap22.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap23.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap24.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap25.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap26.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap27.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap28.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap29.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap30.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap31.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap32.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap33.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap34.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap35.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap36.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap37.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap38.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap39.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap40.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap41.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap42.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap43.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap44.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap45.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap46.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap47.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap48.txt Madison 

c:\toccata\samples\feds\FedPaps\ fedpap59.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap60.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap61.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap65.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap66.txt Hamilton 
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c:\toccata\samples\feds\FedPaps\ fedpap67.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap68.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap70.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap71.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap72.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap73.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap74.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap75.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap76.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap77.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap78.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap79.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap80.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap81.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap82.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap83.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap84.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap85.txt Hamilton 

 
Here the category-column is called "producer" rather than "doctype", which would entail putting a 
line 
 
targvar  producer 
 
into any parameter file using this metafile. (See Appendix 2.) 
 
For this dataset, the corresponding holdout metafile (toccata\samples\feds\mets\holdout1.txt) is 
shown below. This contains works by some contemporaries as well as Hamilton and Madison. It also 
includes the disputed essays, coded as "Mad?". 
 

prepath filename producer 

c:\toccata\samples\feds\holdout\ Ham1787PlanGovt.txt Hamilton 

c:\toccata\samples\feds\holdout\ Ham1790PublicCredit.txt Hamilton 

c:\toccata\samples\feds\holdout\ Ham1791ManuRept.txt Hamilton 

c:\toccata\samples\feds\holdout\ Jeff1801.txt Jefferson 

c:\toccata\samples\feds\holdout\ Lincoln1863Gettysburg.txt Lincoln 

c:\toccata\samples\feds\holdout\ Mad1785.txt Madison 

c:\toccata\samples\feds\holdout\ Madison_BillofRights_1789.txt Madison 

c:\toccata\samples\feds\holdout\ Mad1809.txt Madison 

c:\toccata\samples\feds\holdout\ Mad18151205.txt Madison 

c:\toccata\samples\feds\holdout\ fedpap04.txt JJay 

c:\toccata\samples\feds\holdout\ fedpap18.txt both 

c:\toccata\samples\feds\holdout\ fedpap19.txt both 

c:\toccata\samples\feds\holdout\ fedpap20.txt both 

c:\toccata\samples\feds\holdout\ fedpap49.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap50.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap51.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap52.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap53.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap54.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap55.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap56.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap57.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap58.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap62.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap63.txt Mad? 

c:\toccata\samples\feds\holdout\ fedpap64.txt JJay 

c:\toccata\samples\feds\holdout\ fedpap69.txt Hamilton 

c:\toccata\samples\feds\holdout\ fedpap70b.txt Hamilton 

c:\toccata\samples\feds\holdout\ sou1811.txt Madison 

c:\toccata\samples\feds\holdout\ PaineT_AgrarianJustice.txt TomPaine 

 
Of course, the point of metafiles is that they can be edited, so there is no need to stick to this 
particular selection. 
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minimet4.py 
 
The easiest way to create an initial metafile is using the metaget.py file, described above under the 
heading "Phase 1". However, this uses the Tkinter library which seems to be sensitive to the exact 
version of Python 3 in use; so in case that doesn't work properly on your computer, I have left the 
more basic program minimet4.py in the distribution. 
 
For example, to create a metafile for all the Federalist papers, the following parameter file could be 
supplied to minimet4.py. 
 
comment  initial Federalist metafile : 

jobname  fed0 

corpath  c:\toccata\samples\feds\FedPaps\ 

metazero  c:\toccata\samples\feds\mets\fedzero.txt 

targname  producer 

targval  Hamilton 
 
Briefly, corpath tells the program where the text files are located; metazero specifies the metafile to 
be created and where to place it; and targval gives the value to be put in the targname column. 
(More on parameter files below, in Appendix 2.) Running minimet4.py with this parameter file 
(fed0.txt) would give the following output on screen. 
 

C:\toccata\p3\minimet4.py 4.2 Thu Nov 28 16:06:37 2013 

command-line args. = 1 

prepath : C:\toccata\p3 

working folder:  C:\toccata\p3 

script usage:  python C:\toccata\p3\minimet4.py <parafile> 

please give parameter file name : fed0 

Paths to search for parameter file : 

['C:\\toccata\\parapath', 'C:\\toccata\\p3', '..', '.', 

'C:\\Users\\Richard\\parapath', 'C:\\Users\\Richard'] 

 fed0  

trying to open : C:\toccata\parapath\fed0.txt 

C:\toccata\parapath\fed0.txt opened for reading. 

c:\toccata\samples\feds\mets 

85 files read. 

85 items written. 

 

Output listing on : ..\op\minimeta.txt 

Results dumped onto: c:\toccata\samples\feds\mets\fedzero.txt  

 

C:\toccata\p3\minimet4.py done on Thu Nov 28 16:06:39 2013 

after 0.25 seconds. 

 
This would cause a metafile (fedzero.txt) to be placed on the c:\toccata\samples\feds\mets\ folder. 
The first five lines of this file are listed below. 
 
prepath filename producer 

c:\toccata\samples\feds\FedPaps\ fedpap01.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap02.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap03.txt Hamilton 

c:\toccata\samples\feds\FedPaps\ fedpap04.txt Hamilton 

.... 
 
You would have to edit this particular file, since it assigns all 85 texts to Hamilton, the majority 
author. However, a corrected metafile exists already (fed1.txt) so that isn't necessary in practice. (If 
you are interested in exploring the case of the Federalist papers, a spreadsheet is provided 
(c:\toccata\samples\feds\metadat\fedcats.xls) that gives the categories of each of the 85 papers.) 
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Appendix 2 : Parameter Files 
 
Parameters used by toccata9.py. Note that misspelt parameters are silently ignored! 
 

Parameter Default value Function 

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be 
used to insert reminders about what the file is meant to do. 

atomize 1 This can be zero or 1. If it is 1, the input texts are tokenized by the 
program's built-in tokenizer. Only set this to zero if your files have 
already been tokenized, in which case whitespace will be 
considered to delimit tokens. 

jobname toccata This gives the job a name. Any text string can be the value. It isn't 
necessary but it is useful as the jobname will be used as a prefix to 
the program's output files, so it can be seen that they form a group. 

trainmet [None] This should be the full path specification of a metafile that indicates 
the text files that belong to the training corpus. 

testmeta [None] This should be the full path specification of a metafile that indicates 
the holdout sample. It is optional: if omitted, the program only does 
the leave-n-out testing step. 

wordonly 0 This should be integer 0 or 1. If it is 1, the tokenizer will ignore input 
tokens unless they begin with an alphanumeric character. If it is 
zero, all tokens will be considered, even sequences of punctuation 
symbols and so on. Unless you're sure the punctuation is original, it 
is advisable to set this parameter to 1. 

casefold 1 This can be 0 or 1. Zero means that upper and lower case is left as 
found on input; 1 means that input texts will have all letters forced 
into lower case. (No effect on character sets without upper/lower 
case distinction.) 

libname docalib_topvocs This should be the name either of one of the supplied classifier 
libraries (docalib_deltoid, docalib_keytoks, docalib_maws, 
docalib_tokspans, docalib_topvocs or docalib_vote) or a user-
written library. Don't include the .py suffix, as this is appended 
automatically by Python. 

paraline [None] This is an indirect way of passing parameters to the library, without 
having to rewrite the main toccata program. The format is to have 
items separated by spaces and to use the equal-sign '=' to separate 
the parameter name (left) from the parameter value (right). An 
example is 
paraline  toks2get=48 multivox=2 
which would tell the docalib_maws.py module to use the most 
discriminatory 48 from the most frequent 96 tokens in the training 
corpus. With docalib_topvocs, the only active parameter is 
corrmode: corrmode=ra specifies Spearman's rank correlation; any 
value other than 'ra' specifies Pearson's r. 
(More details below this table.) 

postcode 0 If zero, any _posthoc file will be written afresh, if postcode is 1 the 
posthoc results will be appended to the existing _posthoc file if it 
exists already. 

randseed 1789 To ensure repeatability, Python's random number generator is 
initialized with this integer value. You can give a different random 
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seed if you wish. 

targvar doctype This should be the name of the column in the metafile(s) containing 
the class labels. 

dumpfile jobname with 
"_dump.dat" 
appended 

The program dumps a rectangular file of the classification results in 
a form that is easy to import into R with the read.delim() function 
for further processing. You can send this to a specific named file if 
you don't want to use the default name. 

listfile jobname with 
"_list.txt" 
appended 

You can give a specific filename for the main output listing if you 
don't want it to have the default name. 

modsfile jobname with 
"_mods.txt" 
appended 

This refers to a file where the classifier's decision models will be 
written. 

outpath subfolder "op" 
of current 
directory 

You can send the output to a specified directory if you like. 

outfile toccata.txt (on 
outpath) 

File where information on parameter settings will be written. 
(Really only needed for debugging.) 

 
Library parameters given using paraline 
 
Each prewritten library has a small number of internal parameters that can be set to non-standard 
values using Toccata's paraline parameter. It is important to note that resetting these values is 
optional. I have experimented to find sensible defaults, so the programs should work well without 
using paraline to alter the default settings. However, I know that users like to experiment, so brief 
descriptions are given below of how to change these values. 
 
_deltoid 
Here the only paraline parameter is topterms, which gives the number of (word-) tokens from the 
top of the ranked frequency list to employ as marker variables. For example, 
 
paraline  topterms=100 
 
would cause the system to use the most frequent 100 words in the training corpus. If this parameter 
is absent, or outside the range 8 to 1024, the program will use the square root of the overall 
vocabulary size, which is usually a reasonable choice. 
 
_keytoks 
This has 2 adjustable parameters, snipsize and topkeys. For example, 
 
paraline  snipsize=256 topkeys=64 
 
would tell the system to use snippets of size 256 tokens in its initial frequency/pervasiveness 
calculations, and keep the most 64 distinctive positive and negative keys (i.e. up to 128 tokens 
altogether) from each category as marker variables. Default snipsize is 115, the size of Shakespeare's 
18th sonnet. If topkeys is not given or is outside the range 8 to 256, the square root of the overall 
vocabulary size is used. 
 
_maws 
This library has 2 adjustable parameters, toks2get and multivox. For example, 
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paraline  toks2get=200 multivox=2 
 
would instruct the system to pick the 400 (200 times 2) most frequent words (by document 
frequency) when building a model but retain only the 200 with the most apparent discriminatory 
effect, as measured by the variation in their above/below median usage rates across the text 
categories -- which can be regarded as a kind of keyness. Default values are toks2get=144 
multivox=1.618034. 
 
_tokspans 
This module uses parameters snipsize (default 144) as in docalib_keytoks, as well as spansize 
(default 3), spanmode (default 1) and topvocs (defaulting to the rounded square root of the 
vocabulary size if not given or outside the range 2 to 256). It also has a parameter spanmode (default 
1). If spanmode is set to zero, the spans used will be treated as sets rather than tuples. This means 
that order is ignored, so that, for instance "of the" is not distinguished from "the of". When 
spanmode is zero, tokens within a span will be listed in alphabetic order on output, though this 
doesn't affect how they match. 
 
_topvocs 
The only adjustable parameter for this library is corrmode, which specifies which type of correlation 
to use. For example, 
 
paraline  corrmode=pm 
 
would cause the system to use Pearson's product-moment correlation in its similarity calculations. 
The default is equivalent to corrmode=ra, which causes the system to employ Spearman's rank 
correlation coefficient. In fact, any value other than "ra" (or absence of this parameter) will cause 
the system to use Pearson's correlation. However, quite extensive testing suggests that rank 
correlation (the default) normally works better. 
 
_vote 
This module does have a couple of parameters, flatfrex and rootfrex, but I believe they are best left 
as initialized by the software. They will probably disappear if there is an upgrade. 
 
Parameters used by minimet4.py.  
 

Parameter Default value Function 

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be 
used to insert reminders about what the file is meant to do. 

corpath [None] Specification of directory where files to be included in metafile 
reside. 

metazero [None] Full path/file specification of output metafile. 

targval 00 Initial value to be given to the target column, normally a class label. 

targname doctype Name to be given to the target column. 

jobname minimeta This gives the job a name. Any text string can be used. It isn't 
necessary for this program. 

outpath [Subfolder "op" 
of current 
directory] 

Directory where logging file will be written. 

outfile minimeta.txt File where logging information will be written. (Really only needed 
for debugging.) 
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Appendix 3 : Sample Screen Output 
 
Below is roughly what you should expect to see on screen when running toccata9.py, in this case 
from the command prompt. 
 
C:\2017>python c:\toccata\p3\toccata9.py 

C:\toccata\p3\toccata9.py 9.2 Mon Apr 24 12:42:22 2017 

command-line args. = 1 

prepath : c:\toccata\p3 

working folder:  C:\2017 

script usage:  python C:\toccata\p3\toccata9.py <parafile> 

please give parameter file name : magskeys 

Paths to search for parameter file : 

['C:\\toccata\\parapath', 'C:\\toccata\\p3', '..', '.', 'C:\\Users\\Richard.lounge-

pc\\parapath', 'C:\\Users\\Richard.lounge-pc', 'C:\2017'] 

 magskeys  

trying to open : C:\toccata\parapath\magskeys.txt 

C:\toccata\parapath\magskeys.txt opened for reading. 

?? Possible problem: no training file specified. 

Using metafile c:\toccata\samples\mags\metadat\mag1.txt instead. 

['prepath', 'filename', 'doctype'] 

144 

target column name : doctype @ 2 

Text types : {'maclearn', 'litling'} 

Text-classifier s/w successfully loaded from library : 

<module 'docalib_keytoks' from 'C:\\toccata\\p3\\docalib_keytoks.py'> 

[Expected to contain definition of class Docadat] 

Number of texts = 144 

Number of tokens= 41501 

Longest = 516 tokens. 

Mean size = 288.2 

Median size = 277.0 

Smallest = 127 

litling 75 21110 

maclearn 69 20391 

reference category :  litling 

total characters = 267478 

snipsize = 115 

Number of snippets = 343 

255 

1 12 

2 24 

3 36 

4 48 

.... [several similar lines omitted to save space] .... 

18 216 

19 228 

20 240 

21 252 

22 264 

unused test cases : [] 

264 trials. 

 

Confusion matrix : 

 

Truecat =           litling maclearn 

Predcat : litling       131        0 

Predcat : maclearn        0      133 

 

Kappa value =  1.0 

Precision (%) by category : 

litling      100.0 

maclearn     100.0 

Recall (%) by category : 

litling      100.0 

maclearn     100.0 
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cases = 264 

cases with unseen category labels = 0 

hits =  264 

percent hits = 100.0 

proportional reduction in error = 1.0 

relative mean pseudo-entropy gain = 0.2618 

mean pseudo-spherical score =  0.8292 

marginal gain = 1.0 

gapscore = 1.0 

Main output listed on : C:\toccata\op\mags_list.txt 

Parameter settings on : C:\toccata\op\toccata.txt 

Export info dumped on : C:\toccata\op\mags_dump.dat 

C:\toccata\p3\toccata9.py done on Mon Apr 24 12:42:48 2017 

after 4.32817 seconds. 

 

 

It's nice to have an example of 100% correct classifications. Although these texts are short (median 
length 277 word tokens) this content-classification task is obviously easier than most realistic 
authorship problems. 
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Appendix 4 : Writing Your Own Classifier Library 
 
To supply a bespoke classifier to toccata you will have to provide a Python3 module with a class 
called Docadat that has at least the class methods listed below. The main program will supply your 
module with information through an object called paradat, which contains parameter values, and a 
list called doclist, which contains information derived from the texts. (More details below.) 
 
def __init__ (self,paradat,doclist): 
 This just creates an object holding the required data and methods. You are advised to copy 
the version in docalib_maws to begin with. 
 
def loadpars (self,paradat,sep1=' ',sep2='='): 
 This interprets any parameters in paradat.paraline and stores them in self.pars (to avoid 
having the library alter values in paradat). Again, you might as well just copy this, and edit it to deal 
with any parameters that your system requires. 
 
def makemods (self,paradat,doclist): 
 This should create the category models. (In fact it could be a single unified model, but the 
calling program still needs it to be called makemods.) In most of the supplied libraries, makemods 
calls a method called makemod to create a model for each class one at a time. This seems tidy to 
me, but is not the only way. 
 
def modprep (self,paradat): 
 This optional method will be called once, if present, before the subsampling process. The 
intention is to allow computations (e.g. on the whole training sample in paradat.doclist) which would 
be wasteful if repeated on every subsample in the subsampling trials. However, it is important not to 
'cheat'; that is, information about the whole training set that should be invisible in the test subsets 
should not become available to the training subsets as a result of this method's operation. 
 
def showmods (self,fo=sys.stdout): 
 This should be able to print a representation of the classification model/models. 
 
def modsims (self,thisdoc,paradat): 
 This is the method that actually compares a document (thisdoc) with all category models 
and returns a matching score. Exactly how it achieves that will vary dependent on the technique 
implemented. In any case, it will have to return a list of numeric values, as many as there are 
categories in the training data (in the same order as in paradat.catlist). These are similarities, so the 
higher the value, the more closely that category matches the document. Estimated probabilities 
would do fine, though the scores don't have to be probabilities. Nor do they have to be positive. If 
your technique naturally produces distances, however, you will have to convert them to similarities 
somehow (e.g. as -d or 1/(d+1)). 
 
You may well also have to write various internal service methods, depending on how your technique 
works, but the ones above are the necessary ones. 
 
Yes, I admit it is a bit tricky, but the libraries provided are liberally sprinkled with comments, so it 
should be possible for an experienced Pythoneer to compose a classifier that will be compatible with 
the toccata main program. The two major data structures that you need to know about, which 
toccata9.py supplies to the above Docadat methods are doclist and paradat. 
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doclist 
 This is a Python list, whose elements are Sack() objects. Sack is just a generic collection 
object. You can assume that each doclist element has the following attributes. (Your program can 
alter these, though that is most inadvisable!) 

 
attribute value 

dnum unique document id number, typically its metafile position counting from zero 

freqtab a dictionary with word-tokens as keys and the frequencies of those word-tokens in the 
document as values (yes, that work is done for you!) 

name the name of the text file containing the document 

outcome the label of that document's category 

size the number of word-tokens in toklist 

text a space-delimited single string made by concatenating the items in toklist 

toklist a list of each (word-)token in the document, computed by my home-brew tokenizer if 
atomize=1 (the default) otherwise using white-space as a separator 

 
paradat 
 This is a Sack() object which keeps together the main program's operational parameters. 
Again, it could be altered by the library methods, but in general that would be inadvisable. The 
attributes of paradat that you should be able to rely on are those described in the previous 
Appendix, as well as the following. If you run toccata9.py with one of the preexisting libraries and 
look at the toccata.txt output file you will see what other attributes might be of interest. Probably 
the only ones you'll need are those listed below. 

 
P.S. 
I intend to add other library modules from time to time, but toccata9.py is probably the final 
numbered release. If I ever write a newer version it will just be toccata.py, and that really will be the 
last. 

 

attribute value 
catlist a list of the category labels in the training corpus 
cats the number of different categories in the training corpus 
docs the number of documents in the training set 
doclist better not use this directly as it normally contains all training texts, not just the ones in 

the current main subsample! 

paraline parameters specifically intended for the library, which can be unpacked by loadpars 
(into self.pars) 

  


