Automatic categorical coding of transcribed talk: a system that forecasts its own future performance

Richard Forsyth, David Clarke, & Shaaron Ainsworth

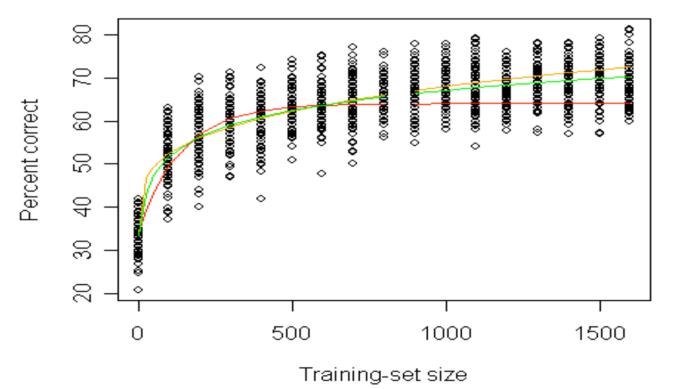
School of Psychology 0115-951 5281 rsf@psychology.nottingham.ac.uk

Outline (back to front)

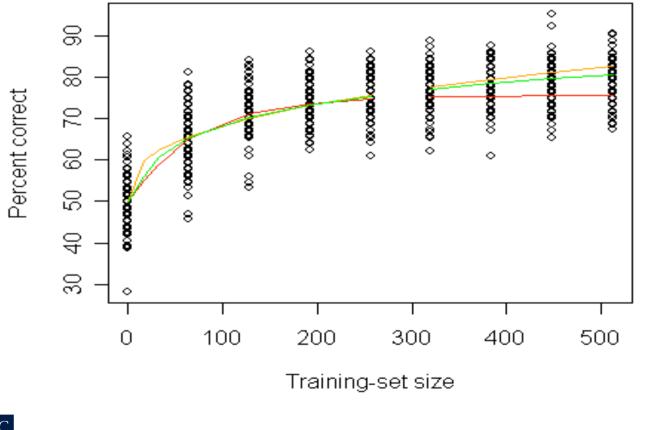
- Some "learning curves"
 - Data and 3 fitted lines
- A solution to a problem you don't think you have
 - Not "the" solution
 - Why show graphs & formulae to a qualitative audience?
- Where did these learning curves come from?
 - Data Sets
 - CODELEARNER project
 - Learning algorithm
 - Models of the learning curve
- Why this may be of interest
 - Automated coding must be adaptive, should be iterative
 - Self-prediction will save wasted effort
- Discussion

A learning curve that fills me with glee!

Self-explanation data, word mode, order 1.



Federalist data, character mode, order 2.



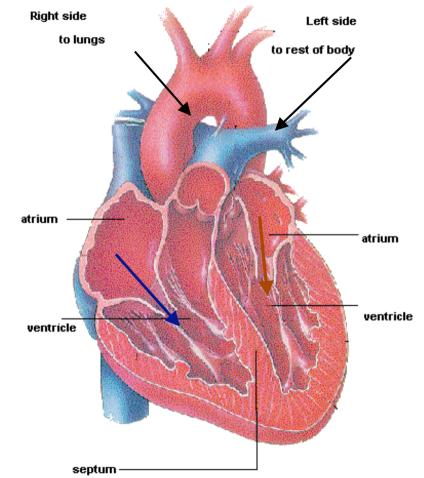
Dataset details, Self-Explanation data:

Learning topic = cardiovascular system

Dataset	Self-explanation transcripts (Ainsworth et al., 2007)
Participants	24 (13 female, 11 male)
Size	23330 words
Segments	1784 (mean length = 13.08 words)
Categories	3: monitoring = 63, paraphrase = 1022, self- explanation = 699

Self-explanation data, 3 main categories:

- Textual Material
 - "The septum divides the heart lengthwise into two sides"
- 3 codes:
 - Paraphrase,
 - The septum is what goes down the middle of the heart
 - Self-explanation,
 - Septum is what separates the two ... some sort of control
 - Monitoring-statement,
 - I'm not sure why



Classic authorship problem

Dataset	Federalist Essays (+2), 17 by Hamilton, 16 by Madison http://www.yale.edu/lawweb/avalon/federal/fed83.htm
Participants	2 (2 male)
Size	84594 words
Segments	583 (mean length = 145.1 words)
Categories	2: Hamilton = 259, Madison = 324

CodeLearner: Main aim & context

• Objective:

- (semi-)automatic classifier to assist categorical coding
- Context:
 - Most coding schemes novel
 - ==> trainable classifier essential (machine learning)
 - Human effort (to be economized) expended **iteratively**:
 - Code another block of text segments by expert
 - Test learning system on cases so far (x-validated)
 - Decide whether to continue:
 - Stop, accuracy good enough
 - Abandon, accuracy will never be good enough
 - Code more cases (accuracy level will be ok with reasonable effort)
 - ==> system must self-predict its future performance

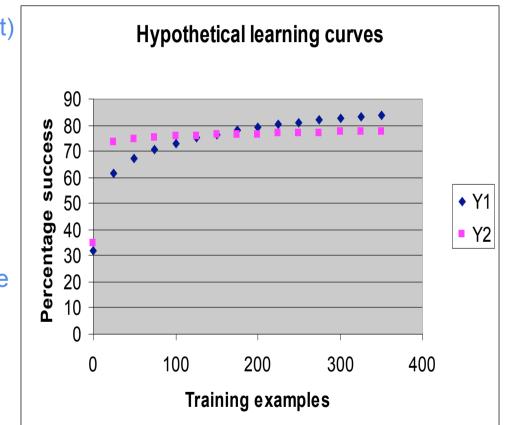
Learning Algorithm

Hybrid algorithm: "Naïve Markov Classifier"

- N-gram Markovian model at character or word level
- Naïve **Bayesian inference** for probabilistic classification
- ("m-estimate" for attenuating probabilities)
- (Naïve Bayes used in many spam-detection systems)
- Embedded within iterative test harness
 - Allows analysis of "learning curves"
 - Also allows testing of self-predictions
 - N.B. testing always on **unseen** examples

Key desiderata for a Code-learner

- Accuracy
 - Learns well (final height)
- Economy
 - Learns fast (initial gradient)
- Self-Prediction
 - Forecasts its own future performance



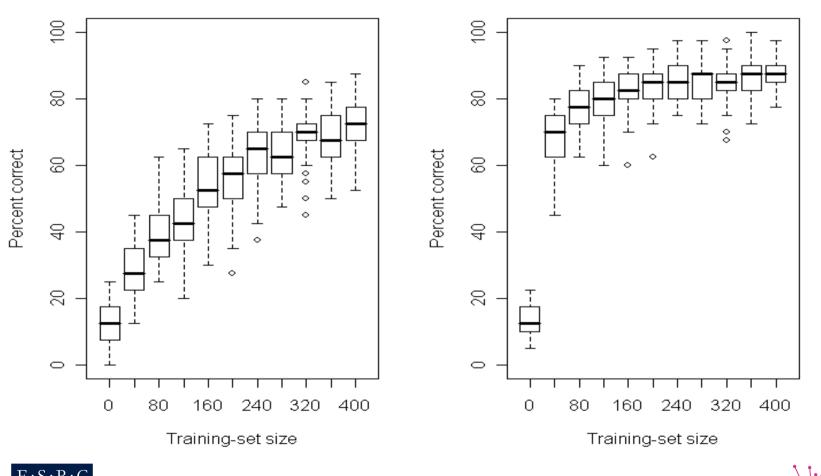
What do we mean by Self-prediction?

System trained on small amount of examples, accurately forecasts its performance on large number of examples

Ideally:

- The further ahead the better
- The fewer examples the better
- The more accurate the better
- 80/20 bad; 20/80 good!

Specimen learning curves (slow & steady; fast but flat)



Clause data, word/0.

Clause data, word/1.

Fitting the "learning curve" / "experience curve"

- 3 formulae tried
 - Power, Exponential, Log-reciprocal

Y = a + b * x ^ c

- Wright (1936), management science
- e.g. cost per unit declines as production continues

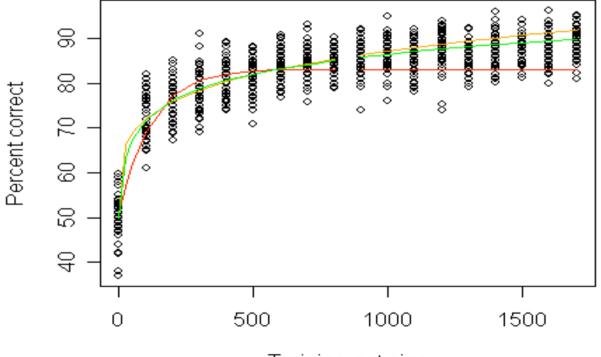
- Hull (1943), psychology
- e.g. time for rat to find food decreases with repeated trials
- Y = a + b * ln(x+1) + c * 1/(x+1)
 - Forsyth (2006), machine learning (ad hoc curve-fitting)
 - e.g. error rate goes down as size of training data goes up

Curve-fitting:

Interpolation:

- Estimating within data range used to optimize coefficients of model
- Extrapolation:
 - Predicting outside data range used to optimize coefficients of model
- Quality score:
 - Usually mean squared deviation between real and fitted data values

Agatha tecs, character mode, order 2.

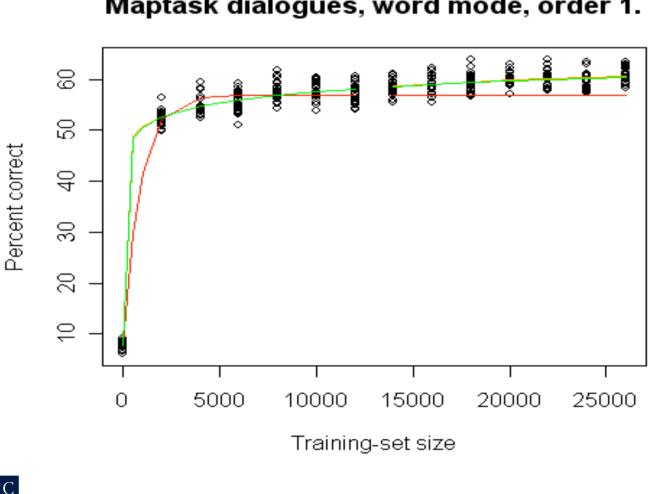


Training-set size

Dataset details, Tectalk data:

"Spoken" dialogue by Marple or Poiroit

Dataset	"talk" from 16 detective novels by Agatha Christie (8 Jane Marple, 8 Hercule Poirot)
Participants	2 fictional! (1 female, 1 male)
Size	50754 words
Segments	1810 (mean length = 28.04 words)
Categories	2: Marple = 1065, Poirot = 745



Maptask dialogues, word mode, order 1.

Dataset details, Maptask dialogues

Dialogue-act classification

Dataset	MapTask dialogues (n=128) http://www.hcrc.ed.ac.uk/maptask
Participants	64 (32 female, 32 male)
Size	156310 words
Segments	27084 (mean length = 5.77 words)
Categories	13: acknowledge = 5605, align = 1778, check = 3137, clarify = 1193, explain = 2160, instruct = 4267, query-w = 772, query-yn = 1758, ready = 2062, reply-n = 884, reply-w = 916, reply-y = 3230, uncodable = 322

Log-reciprocal is the winner

- 8 trials: 4 datasets, 2 unit modes
- Log-reciprocal always best (8/8)
 - In terms of mean squared deviation on extrapolations
 - Exponential rubbish
 - Power law versus Log-reciprocal:
 - Student's t = 3.4, df = 7, p = 0.01144
- Extrapolation MORE accurate than interpolation!
 - Exponential E/I = 166% (66% worse)
 - Power-law E/I = 97%
 - Log-reciprocal E/I = 85% (15% better!)

So what?

- If you're like most social scientists, you'll have plenty of short text segments to code
- If you're like most social scientists, you'll have a nonstandard coding scheme
- If you have plenty of short text segments to code with a non-standard coding scheme, you'll want a trainable system to do most of the work
- If you want a trainable system to do most of the work, you'll need to know when to stop training it
- If you need to know when to stop training it, it will need to predict its future performance
- **Q.E.D**.

That's all folks

Thank you for your attention

[Thanks to CODELEARNER team: Shaaron Ainsworth David Clarke Richard Forsyth Claire O'Malley, and our Sponsors (below).]

X. Discussion points

- NMC gives respectable performance
 - Other algorithms to be tried
- Log-reciprocal formula best for self-prediction (so far)
 - Beats power law (Management Science tradition)
 - Beats exponential law (Learning Theory tradition)
- Key point:
 - Iterative expert coding till automatic system takes over
 - Therefore system must **self-predict**
 - Standard machine-learning systems don't do this
 - Therefore our simple model is probably best around

X. Text categorization

Disciplinary differences in approach

Linguistics:

- Tagging (PoS, semantic)
- Mostly at word level
- Computing:
 - Classifying (authorship, content)
 - Mostly at document level
- Social Sciences:
 - Categorical coding
 - Mostly at "segment" level (phrase, utterance)

X. Naïve Markov classifier

- Why I like this algorithm:
- Is fast & not very memory-hungry
- Has no pre-processing phase
- Needs no lexicons or external support s/w
- Has no variable-selection phase
 - (therefore less danger of overfitting)
- Uses all the data of a given type
- Has a Bayesian underpinning
- Is highly generic
- Can work in almost any language
 - (in principle could handle DNA sequences etc.)

