Evolutionary Computation

R.S.Forsyth@lboro.ac.uk COC131 March 2009

Outline

■ (1) Tour of fundamental concepts

■ (2) Example implementation

■ (3) Plus a few bits & pieces

Basic idea

4 billion years of field testing can't be bad. (Can it?)

Like most neat computing ideas, Turing thought of it first

- Turing identified a third approach to machine intelligence in his 1948 paper entitled "Intelligent Machinery" (Turing 1948, page 12; Ince 1992, page 127; Meltzer and Michie 1969, page 23), saying:
- "There is the genetical or evolutionary search by which a combination of genes is looked for, the criterion being the survival value."

Though of course Darwin laid the foundations

Evolutionary Computing, major "species" ("genera", "families"?)

- Evolution Strategy (ES)
 - ☐ Ingo Rechenberg, Germany
- Genetic Algorithms (GA)
 - ☐ John Holland, USA
- Genetic Programming (GP)
 - □ John Koza, USA
- Evolutionary Programming (EP)
 - □ Lawrence/David Fogel, USA

Crossover operators

■ Point crossover:

abcdefghij

0123456789

abcd456789

■ Uniform crossover:

abcdefghij

0123456789

0 b 2 3 4 5 g 7 i 9

Mutation operators

- Depends on problem representation :
 - ☐ flip a bit, e.g. 0->1, 1->0
 - □ add/subtract small random value to a floating-point number, e.g. 12.34 -> 12.21
 - □ change a symbol, e.g. * -> +
 - □ swap 2 elements, e.g. "lots" -> "lost"
 - (sometimes treated as separate operator, inversion)
- Has to be "small" change in some sense
 - □ explores "neighbouring" solutions

Selection

- Warning! Don't use "fitness-proportional selection"
 - □ (aka "Roulette wheel selection")
- Whitely, D.L. (1989).
 - The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best
 - Proceedings of the 3rd International Conference on Genetic Algorithms
 - □ Morgan Kaufmann Publishers Inc.

Generational versus incremental procedures

- Generational :
 - □ like Mayflies or 17-year cicadas
 - entire population replaced on each cycle
- Incremental:
 - □ like most plants, vertebrates etc.
 - □ some parental survival (often majority)
- N.B. Computational effort should be measured by number of offspring created
 - □ not number of generations

From genotype to phenotype

- Genome contains info on how to build body, e.g.:
 - \square 2, 1, 1, 1, 0, 4, 2
 - \Box 0, 0, 0, 0, 1, 2, 0
- Genes:
 - Eyes, Smile, Roundbody,
 Redhead, Redbody, Legs,
 Arms

Then environment evaluates phenotype

- Fitness function gives a score, e.g.
 - network connectivity with simulated traffic
 - wing shape in simulated wind tunnel
 - □ investment strategy applied to past price series
 - □ timetable compared to constraints
 - classification rule-set applied to training data

Key implementation ingredients

- Genome representation :
 - should be easy to chop into bits and splice bits together
 - □ Basic GA uses binary strings
 - □ ES often uses floating-point vectors
 - □ GP uses tree structured representation
- Fitness function:
 - □ Problem-dependent, not always obvious

A CACE study: IOGA revisited

Background:

- 1-NNC a simple & robust classification technique (aka IBL)
 - Just find "nearest" case in training data to current instance & assign its category label as predicted class
 - □ requires a distance function (more details later)

□ But:

- no compression, just memorization
- rather slow classification phase
- fails to deal with redundant features
- doesn't help insight

Enhancing basic 1-NNC

- Many improvements proposed
 - □ E.g. removing redundant features
 - □ E.g. removing redundant instances
- But not both at once (till 1995)
 - □ Ideally suited to genetic representation!

Reviewing some basic concepts

- Typical classifier trained on "flat-file" training data:
 - □ data matrix (R rows, C columns)
 - cases/instances, attributes/features
 - 1 column gives known category label
 - □ (Weka uses arff representation)
 - attribute-relation file format
- Hence concept of "feature space"

Example of feature space

petallength petalwidth typecode

1.7 0.5

• 1.5 0.2 *°*

4.5 1.5 2

4.1 1.3 2

4.9 2.0 3

■ 5.0 1.9 3

Iris data, archetypes.

IOGA/EASE representation scheme

- Bitstring of length R + V
 - □ R = number of rows (instances)
 - □ V = number of variables (features)
- First R bits:
 - □ 1 means keep this case, 0 means ignore
- Last V bits:
 - □ 1 means use this feature, 0 means ignore
- N.B. leave-1-out mode:
 - □ no case allowed to be its own nearest neighbour

EASE fitness function

- Based on leave-1-out classification score:
 - \Box F = K B/(R+V)
 - F = fitness
 - K = number of correct classifications
 - B = number of bits set to 1 in genestring
 - R = cases, V = features
- Bias towards brevity (B/(R+V)) :
 - essentially just a tie-breaker
 - □ "Ockham's Razor" ?

Applied to four datasets

- Echo (sonar data, in UCI)
 - □ cases 107/101, vars 60, classes 2
- Glaz (glass data, z-scores, from UCI)
 - □ cases 111/103, vars 9, classes 6
- Iris (Iris data, in UCI)
 - □ cases 77/73, vars 4, classes 3
- Zoobase (animal data, in UCI)
 - □ cases 54/47, vars 17, classes 7

Examples of fitness progression

Glazdat: fitness of best genestring.

EASE + CACE

- Evolutionary Archetype Search Engine
 - □ uses evolutionary algorithm to generate archetypes
- Closest Archetype Classification Engine
 - uses archetype file from EASE to classify (holdout sample) cases
 - applies nearest-neighbour technique
 - ("city-block" distance metric in results presented here)

Accuracy comparisons

Dataset	1-NNC holdout success %	CACE holdout success % (median of 3)
echodat	76.24	79.21
glazdat	65.05	62.14
irisdat	95.89	98.63
zoobase	93.62	91.49
mean =	82.70	82.87

Size comparisons

Data	training	training cols	archetype	archetype	Scaling
	rows		rows	cols	
echo	107	60	51	18	6.99
glaz	111	9	35	6	4.76
iris	77	4	6	3	17.11
zoobase	54	17	16	5	11.48
					10.08

Summary

- Slight increase in accuracy
 - □(65 versus 66 mistakes)
- Great reduction in size:
 - □approx. 10-fold reduction in R*V product
 - i.e. raw data contains 10 times as many numbers as archetype "spreadsheet"
- Improved insight ?

A bouquet of flowers?

Distinctive characteristics of evolutionary-computing traditions

- ES
 - sometimes >2 parents!
 - typically floating-point representation
 - meta-evolution of parameters (e.g. mutation rate)
- GA
 - binary representation
 - generational algorithms
- GP
 - tree-structured representation (Lisp functions)
 - executable genome
- EP
 - □ no crossover (?)
 - typically finite-state-machine representation

Recommended reading

- Eiben, A.E. & Smith, J.D. (2003). Introduction to Evolutionary Computing. Springer-Verlag
- Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
- Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.
- Koza, J.R. (1992). Genetic Programming. MIT Press.

Websites

- http://en.wikipedia.org/wiki/Evolutionary_computation
- http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
- http://www.genetic-programming.org/
- http://www.ra.cs.uni-tuebingen.de/software/JCell/tutorial/c
- http://bionik.tu-berlin.de/institut/
- http://www.cems.uwe.ac.uk/~jsmith/ecbook/ecbook.html