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Outline

 (1)  Tour of fundamental concepts

 (2)  Example implementation

 (3)  Plus a few bits & pieces
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Basic idea
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4 billion years of field testing can't 
be bad. (Can it?)
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Like most neat computing ideas, 
Turing thought of it first
 Turing identified a third approach to machine 

intelligence in his 1948 paper entitled “Intelligent 
Machinery” (Turing 1948, page 12; Ince 1992, 
page 127; Meltzer and Michie 1969, page 23), 
saying: 

 “There is the genetical or evolutionary search by 
which a combination of genes is looked for, the 
criterion being the survival value.”
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Though of course Darwin laid the 
foundations
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Evolutionary Computing, major 
"species" ("genera", "families" ?)
 Evolution Strategy (ES)

 Ingo Rechenberg, Germany
 Genetic Algorithms (GA)

 John Holland, USA
 Genetic Programming (GP)

 John Koza, USA
 Evolutionary Programming (EP)

 Lawrence/David Fogel, USA



Evolutionary Computing 812 March 2009

Basic Evolutionary Computing Cycle

Create & Evaluate
Initial Population

(random generation)

Current Population

Select Parents
(1, 2, ... n)

Create Offspring:
Recombination,

Mutation

Evaluate OffspringArchive of Solutions
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Crossover operators
 Point crossover :

 Uniform crossover :

a b c d e f g h i j

0 1 2 3 4 5 6 7 8 9

a b c d 4 5 6 7 8 9

a b c d e f g h i j

0 1 2 3 4 5 6 7 8 9

0 b 2 3 4 5 g 7 i 9
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Mutation operators
 Depends on problem representation :

 flip a bit, e.g. 0->1, 1->0
 add/subtract small random value to a floating-point 

number, e.g. 12.34 -> 12.21
 change a symbol, e.g. * -> +
 swap 2 elements, e.g. "lots" -> "lost"

 (sometimes treated as separate operator, inversion)
 Has to be "small" change in some sense

 explores "neighbouring" solutions
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Selection
 Warning! Don't use "fitness-proportional 

selection"
 (aka "Roulette wheel selection")

 Whitely, D.L. (1989).
 The GENITOR Algorithm and Selection Pressure: 

Why Rank-Based Allocation of Reproductive Trials is 
Best

 Proceedings of the 3rd International Conference on 
Genetic Algorithms

 Morgan Kaufmann Publishers Inc.
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Generational versus incremental 
procedures
 Generational :

 like Mayflies or 17-year cicadas
 entire population replaced on each cycle

 Incremental :
 like most plants, vertebrates etc.
 some parental survival (often majority)

 N.B. Computational effort should be measured 
by number of offspring created
 not number of generations
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From genotype to phenotype
 Genome contains info on 

how to build body, e.g.:
 2, 1, 1, 1, 0, 4, 2
 0, 0, 0, 0, 1, 2, 0

 Genes:
 Eyes, Smile, Roundbody, 

Redhead, Redbody, Legs, 
Arms

 "Body"
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Then environment evaluates 
phenotype
 Fitness function gives a score, e.g.

network connectivity with simulated traffic
wing shape in simulated wind tunnel
 investment strategy applied to past price 

series
 timetable compared to constraints
classification rule-set applied to training data
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Key implementation ingredients

 Genome representation :
should be easy to chop into bits and splice 

bits together
Basic GA uses binary strings
ES often uses floating-point vectors
GP uses tree structured representation

 Fitness function :
Problem-dependent, not always obvious
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A CACE study: IOGA revisited
 Background:

 1-NNC a simple & robust classification technique (aka 
IBL)

 Just find "nearest" case in training data to current instance & 
assign its category label as predicted class

 requires a distance function (more details later)
 But:

 no compression, just memorization
 rather slow classification phase
 fails to deal with redundant features
 doesn't help insight
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Enhancing basic 1-NNC

 Many improvements proposed
E.g. removing redundant features
E.g. removing redundant instances

 But not both at once (till 1995)
 Ideally suited to genetic representation!
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Reviewing some basic concepts

 Typical classifier trained on "flat-file" 
training data:
data matrix (R rows, C columns)

 cases/instances, attributes/features
1 column gives known category label
(Weka uses arff representation)

 attribute-relation file format
 Hence concept of "feature space"
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Example of feature space
 petallength petalwidth 

typecode
    1.7        0.5        1
    1.5        0.2        1
    4.5        1.5        2
    4.1        1.3        2
    4.9        2.0        3
    5.0        1.9        3
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IOGA/EASE representation 
scheme
 Bitstring of length R + V

 R = number of rows (instances)
 V = number of variables (features)

 First R bits:
 1 means keep this case, 0 means ignore

 Last V bits:
 1 means use this feature, 0 means ignore

 N.B. leave-1-out mode:
 no case allowed to be its own nearest neighbour
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EASE fitness function

 Based on leave-1-out classification score:
 F = K – B/(R+V)

 F = fitness
 K = number of correct classifications
 B = number of bits set to 1 in genestring
 R = cases, V = features

 Bias towards brevity (B/(R+V)) :
 essentially just a tie-breaker
 "Ockham's Razor" ?
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Applied to four datasets

 Echo (sonar data, in UCI)
 cases 107/101, vars 60, classes 2

 Glaz (glass data, z-scores, from UCI)
 cases 111/103, vars 9, classes 6

 Iris (Iris data, in UCI)
 cases 77/73, vars 4, classes 3

 Zoobase (animal data, in UCI)
 cases 54/47, vars 17, classes 7
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Examples of fitness progression
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EASE + CACE

 Evolutionary Archetype Search Engine
 uses evolutionary algorithm to generate archetypes

 Closest Archetype Classification Engine
 uses archetype file from EASE to classify (holdout 

sample) cases
 applies nearest-neighbour technique

 ("city-block" distance metric in results presented here)
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Accuracy comparisons

82.8782.70mean =

91.4993.62zoobase

98.6395.89irisdat

62.1465.05glazdat

79.2176.24echodat

CACE holdout 
success % 
(median of 3)

1-NNC holdout 
success %

Dataset
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Size comparisons

Data training 
rows 

training cols archetype 
rows 

archetype 
cols 

Scaling 

echo 107 60 51 18 6.99 
glaz 111 9 35 6 4.76 
iris 77 4 6 3 17.11 
zoobase 54 17 16 5 11.48 
     10.08 
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Summary

 Slight increase in accuracy
(65 versus 66 mistakes)

 Great reduction in size:
approx. 10-fold reduction in R*V product

 i.e. raw data contains 10 times as many numbers 
as archetype "spreadsheet"

 Improved insight ?
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A bouquet of flowers ?
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A tangled thicket ?
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Distinctive characteristics of 
evolutionary-computing traditions
 ES

 sometimes >2 parents !
 typically floating-point representation
 meta-evolution of parameters (e.g. mutation rate)

 GA
 binary representation
 generational algorithms

 GP
 tree-structured representation (Lisp functions)
 executable genome

 EP
 no crossover (?)
 typically finite-state-machine representation
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Recommended reading

Eiben, A.E. & Smith, J.D. (2003). Introduction to 
Evolutionary Computing. Springer-Verlag

Goldberg, D.E. (1989). Genetic Algorithms in 
Search, Optimization and Machine Learning. 
Addison-Wesley.

Holland, J.H. (1975). Adaptation in Natural and 
Artificial Systems. University of Michigan Press.

Koza, J.R. (1992). Genetic Programming. MIT 
Press.
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Websites
 http://en.wikipedia.org/wiki/Evolutionary_computation
 http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
 http://www.genetic-programming.org/
 http://www.ra.cs.uni-tuebingen.de/software/JCell/tutorial/ch03s05.html
 http://bionik.tu-berlin.de/institut/
 http://www.cems.uwe.ac.uk/~jsmith/ecbook/ecbo

ok.html

http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_computation
http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
http://www.genetic-programming.org/
http://www.genetic-programming.org/
http://www.ra.cs.uni-tuebingen.de/software/JCell/tutorial/ch03s05.html
http://bionik.tu-berlin.de/institut/
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