Cluster Analysis (Clustering)

COC131 Data Mining 19 March 2009 Richard Forsyth R.S.Forsyth@lboro.ac.uk

Cluster Analysis:

- What's it for?
 - to find (sub)groups in data
- Why?
 - fundamental to human thinking
 - discovery of "natural kinds" (Quine, 1969)
 - Carl Linnaeus : tree-structured taxonomy

A biological example

Data from *The Third Chimpanzee* by Jared Diamond, 1992

Who uses it?

- Astronomers
 - Types of galaxies, planets, stars
- Biologists
 - Families, genera, species
- Marketing people
 - Market segmentation
- Psychiatrists
 - Different types of suicide attempts
- Etc.

What is it?

- a form of unsupervised learning
 - related to k-NNC
- difference between clustering and classification
 - group membership must be known for classification
 supervised learning
 - group membership is unknown prior to clustering
 - unsupervised learning = discovery procedure
 - Not just a question of getting out the class structure you knew about

Basic idea:

Clusters are

"continuous regions of [feature] space containing a relatively high density of points, separated from other such [clusters] by regions containing a relatively low density of points." --Everitt (1980).

Most important point!

- There is NO "right answer"
- Danger of evaluating by correspondence to pre-existing grouping
 - more valuable to find unexpected groupings
- (more on evaluating clusterings later)

Outline:

1. Basic ideas

- 2. Clustering methods
- 3. Clustering problems
- 4. Odds & ends

2. Clustering Methods:

• Major design choices:

- what sort of clustering strategy?
- which variables are to be used?
- how is distance/similarity to be measured?
- what criteria will be used to link cases into clusters & clusters into bigger clusters?

2.1 Clustering Strategies:

- Incremental
 - Agglomerative
 - Divisive
- Iterative
- [Weka rather offbeat]

2.1 K-means pseudocode:

- Input k = number of clusters sought
- Pick k random cases as initial cluster centroids
- Repeat
 - Assign each case to nearest cluster centroid
 - Measure total distance of each case to its cluster centroid
 - Calculate new cluster centroids
 - Until convergence ## no change
- Display results
- ## basically just hill-climbing (local optimum).
- ## best to have several re-starts.

2.2 Variable Selection & Scaling:

Selection of variables:

- crucial to result of clustering
- often helpful to do Principal Components Analysis first (Witten & Frank, 7.3)

Variable Scaling:

- customary to standardize using z-scores
 - $z_{ij} = (x_{ij} m_j) / s_j$
 - each variable relative
 - avoids arbitrary variable weighting

2.2 Variable Scaling:

Pomona students '99 : kg/cm versus lb/inch.

2.2 Variable Selection:

European countries: the effect of variable selection.

2.3 Distance measures:

- Euclidean distance
 - $d(i,j) = \operatorname{sqrt}(\sum (z_{ik} z_{jk})^2)$
- City-block distance
 - $d(i,j) = \sum abs(z_{ik} z_{jk})$
- Canberra metric
 - $d(i,j) = \Sigma(abs(z_{ik} z_{jk})/(z_{ik} + z_{jk}))$
- What about other data types?
 - nominal, ordinal, interval, ratio
 - string?
 - String similarity metrics (computationally expensive)

2.4 Methods of Combining Clusters:

- Single linkage (nearest neighbour)
- Complete linkage (furthest neighbour)
- Average linkage
- Centroid linkage
- (RF recommends Ward's method as default)

2.5 Displaying a Clustering:

- Hierarchic methods:
 - Dendrogram
 - Icicle plot
 - (Ugly to my eyes)

- Iterative methods:
 - No standard graphical mode
 - (Will show k-means plot later)

2.6 Example Dendrogram:

Cluster dendrogram : European flag data.

Example Flags (Lux, NL, Slovakia, Slovenia)

2.5 Displaying the results of a nonhierarchical method:

Iris data (pl,sw) : k-means clusters, with k=3.

3. Problems with Cluster Analysis:

- Choosing an appropriate number of clusters
- Validating a clustering

3.1 How many clusters ?

Add a wrapper round k-means

- try g-1 to g+1
 - pick best on quality index
- rule of thumb for guess of g:
 - g = round(ln(n+1))

Swiss 1000-Franc note (1911-1978):

Swiss Franc Data:

- Flury & Riedwyl (1988)
- 205 1000-Franc notes
- Six measures (in mm) :
 - Breadth
 - Lheight
 - Rheight
 - Botm
 - Topm
 - Diagonal

Swiss Francs dendrogram:

Swiss Franc Dendrogram, Ward's Method.

Swiss Banknotes : Take Fakes.

COC131 ~ Cluster Analysis

3.2 How to validate a clustering ?

Quality measures

- C = (trace(B)/(g-1)) / (trace(W)/(n-g))
- CU : Category Utility
- "Silhouette coefficient"
- MDL principle

Re-sampling approach

quasi-cross-validation

4. Future directions:

- Long-term answer must be evolutionary optimization
- Fitness function ~ cluster quality:
- Problem:
 - Impurity measures always reduce as number of clusters increases
 - Therefore need an approach based on the MDL principle:
 - Cost = cost(cluster_spec) + cost(data | cluster_spec)
 - See Witten & Frank, p. 181-184
 - Still a research issue

Further reading:

- Dunham, M. (2003). Data Mining. Pearson Educational.
- Everitt, B.S. (1993). Cluster Analysis, 3e. London: Arnold.
- Flury, B. & Riedwyl, H. (1988). Multivariate Statistics: a Practical Approach. C.U.P.
- Murtagh, F. & Heck, A. (1987). Multivariate Data Analysis. Dordrecht: Kluver.
- Witten & Frank: 4.8, 6.6, 10.6 (7.3)

Relevant websites:

- http://astro.u-strasbrg.fr/~fmurtagh/mda-sw/
- http://darwiniana.org/intro1.htm
- http://lib.statlib.cmu.edu/
- <u>http://thames.cs.rhul.uk/~fionn/strule/books/hol</u> <u>dall.pdf</u>
- http://www.r-project.org/
- http://www-

users.cs.umn.edu/~kumar/dmbook/ch8.pdf

Practicalities:

- Martin Sykora has Eurodata
- Tomorrow: practice using Weka
- Will transfer ppt to pdf & then Sameer will put onto course website
 - Next week: text mining case study