The Evolution of BEAGLE: Confessions of a mongrel rule-breeder

Richard Forsyth, www.richardsandesforsyth.net

Outline

- (1) Biased retrospective on the genealogy of Genetic Programming
- (2) The BEAGLE revival: some lessons learned
- (3) Prospects of progress \& prophecies of peril

But first, what is Genetic Programming?

- We wouldn't be here if we didn't know.
- Or would we?

Genotypes as Programs

■ "The consequence of the ensuing encounter with the impinging multifactored environmental complex may be death, as the inevitable outcome of inadequate genetic programming; or it may be survival, with the genes then cooperatively spelling out the individual developmental tendencies."

- Pulp and Paper Magazine of Canada, 59, 1958, page 193.

Genotypes from Programs

- "Hex settled down to flick through the pile of manuals. Genetic programming wasn't easy. He could see why Rose, even though he'd invented the concept and written the handbooks, had baulked at the details." - R. Forsyth, Computer Weekly, 6 February, 1979.
- "This software is to be transferred from electronic equipment into living tissue via the genetic programming technique invented by Mike Rose -- a transformation that will turn the animal kingdom into a biological computing engine, rendering the Future System effectively immortal. It is the greatest amino acid trip since Genesis." - R. Forsyth, Computer Weekly, 13 February 1979.

Programs as Genotypes

- "GP evolves computer programs, traditionally represented in memory as tree structures." - Wikipedia, 11 February 2016.
- "genetic programming evolves over populations of program fragments to assemble a final program that gives a solution." Oxford Dictionary of Computing, Daintith \& Wright (2008).
- "Genetic Programming is the extension of the genetic model of learning into the space of programs. That is, the objects that constitute the population are not fixed-length character srings ... they are programs that, when executed, "are" the candidate solutions to the problem. These programs are expressed in genetic programming as parse trees, rather than as lines of code." Hitchhiker's Guide to Evolutionary Computing, 2001. Accessed 11 February 2016: http://www.aip.de/~ast/EvolCompFAQ/Q1 5.htm

Basic Evolutionary Computing Cycle

The Genesis of Genetic Programming?

"Koza was 30,000 feet above
Greenland when he asked himself why a genetic algorithm, so adept at refining pipelines, couldn't be used to evolve its own software."

Popular Science, April 2006.
http://www.popsci.com/scitech/article/2 006-04/john-koza-has-built-inventionmachine

Eureka Moments in Science

Genetical Search: like so many neat computing ideas, Turing thought of it first

- Turing identified a third approach to machine intelligence in his 1948 paper entitled "Intelligent Machinery" (Turing 1948, page 12; Ince 1992, page 127; Meltzer and Michie 1969, page 23), saying:
- "There is the genetical or evolutionary search by which a combination of genes is looked for, the criterion being the survival value."

Program evolution before 1987

- "The scheme sketched is really a natural selection on the processing demons. If they serve a useful function they survive, and perhaps are even the source for other subdemons who are themselves judged on their merits." -- Selfridge, O. (1959). p. 14.
- "From a more abstract viewpoint, then, an adaptive system is a schema for generating programs in accordance with the dictates of the environment." -- Holland, J. (1962) p. 217.
- "the generation procedure operates in parallel fashion, producing sets or populations of programs at each moment." -- Holland, J. (1962).
- "symbioorganisms will consist of numbers, and numbers in the machine can be interpreted as instructions according to any arbitrary code which can be established by writing an interpretive program." -- Barricelli, N. (1963). p. 2.
- "Thus, nonregressive evolution proceeds to find better and better programs for attacking the problem in hand." -- Fogel, L., Owens \& Walsh (1966). p. 12.
- "this highlights the fact that the rules are really programs in a special-purpose language, which might lead to the conclusion that the system should ultimately generate LISP functions." -- Forsyth, R. (1981). p. 165.

My favourite definition of GP

- "Genetic programming applies evolutionary search to the space of tree structures which may be interpreted as computer programs in a language suitable to modification by mutation and recombination." Bäck, T., Hammel, U. \& Schwefel, H-P. (1997). IEEE Transactions on Evolutionary Computation, 1(1), 3-17.

Beyond the bitstring barrier

- Tree-structured heritable material
- Variable-length heritable material
- Executable heritable material
- Syntax-aware crossover
- -- Kinnear (1994).
$\square[$ Optimized by emulated evolution.]

One Giant Leap or many small steps?

"if Watson and Crick had not existed, the insights they provided in one single package would have come out much more gradually over a period of many months or years. Dr. B might have seen that DNA is a double-strand helix, and Dr. C might later have recognized the hydrogen bonding between the strands. Dr. D later yet might have proposed a complementary purine-pyrimidine bonding, ... Finally, we might have had to wait for Dr. G to propose the replication mechanism of DNA based on the complementary nature of the two strands. All the while Drs. $\mathrm{H}, \mathrm{I}, \mathrm{J}, \mathrm{K}$ and L would have been confusing the issue by publishing incorrect structures and proposals." Gunther S. Stent (1972). Scientific American, 227, p. 90.

The Ascent of GP

A spreadsheet of serendipity

Tentative Conclusions

- Quantum leaps (i.e. little \& often), not 1 huge jump
\square From 30,000 feet...
- Another illustration of the (Patrick?) "Matthew Effect"?
\square BEAGLE early but uninfluential

Generalizing GP

- "Although the preferred embodiment uses computer programs as entities, using other types of entities remain [sic] within the scope and spirit of the present invention." J. Koza (1990) US Patent 4935877, p. 12.
- "Today, different approaches are considered as GP, from the evolution of expression trees to the evolution of electronic circuits or even architectural designs (structures, for short). The overarching principle is to subject all these kinds of structures with variable complexity to forces of evolution by applying mutation, crossover and fitness-based selection." W. Banzhaf (2013) Evolutionary Computation and Genetic Programming.

Refloating BEAGLE

Heuristic Evolutionary Rule Breeder

How many BEAGLEs?

- 3 'incarnations' ('generations'?)
\square Veteran/First-generation/grandmother: Kybernetes, 1981
\square Vintage/Second-generation/mother: PC/BEAGLE, 1985
\square Modern/Third-generation/daughter: Python3 BEAGLE, 2016

Good Points of 1980s BEAGLE

- It worked! (Fast enough on MS/DOS personal computers to solve practical problems.)
- Produced programs in C, Fortran or Pascal generated from example data. (Practical automatic programming.)
- Dealt with numeric targets (tabular regression) as well as logical target expressions (classification).
- Avoided 'bloat' with a prolixity penalty.
- Handled string fields as well as numeric variables.
- Bumbled beyond the bitstring.
- Didn't fall into the fitness-proportional selection trap. (Floating approximate median gave quasi-rank-based selection without expense of sorting.)

Points to Improve in $21^{\text {st }}$ Century BEAGLE

- Move from generational to incremental search. (Mammals versus mayflies.)
- Handle multi-class classification problems.
- Devise a more intelligible string-handling technique.
- Have a slightly richer expression language
- Implement brevity-bias in a more principled manner.
(Tidy after evolutionary process, not during!)
- Do Bayesian reasoning right! (Saundesonian??)
\square ["None of the above" mode ~ credibility of probability]
- Give it away free! (Nobody pays for software.)

"Sea Trials"

- 0. Informal trials just to make things work
- 1. Tests of the evolutionary engine
\square Selecting selection pressure (probings)
- Assignment Problem (vs Hungarian Algorithm)
\square Exploring "continental collision" (partitioned populations) - Travelling Salesrep Problem
- 2. Tests of classification methods
\square Basic check against PC/BEAGLE (binary benchmarks)
\square Assessing effect of brevity bias in lexicographic fitness
\square Tabular versus Demonic decision-making

Assignment Problem Trial

Relscore = 1 -
(EvscoreHunscore) /
(RandvalHunscore)
[~ proportional reduction in error measure.]

How many probes? Is a duel a tournament?

Asst. problem, size>12: score relative to Hungarian method, by probings.

- You can have too much of a good thing
■ 'Duel' selection is viable

Touring the 'Hexagon’

Evotourism on the 'Hexagon', 131072 trials, dist=892.

A shorter tour

Evotourism on the 'Hexagon', 131072 trials, dist=843.

Partitioned Populations

pexagon tour costs with pops=1 versus pops=2.

Take-home message (16 reps, 2 modes) : population partitioning doesn't help enough to justify itself. (Not to be incorporated.)

Maximizing travel expenses ?

Maximal tourism: to travel is more important than to arrive?

Getting back to BEAGLE

- Baseline binary benchmarks
- Brevity bias testing
\square Lexicographic fitness
- [accuracy,size]
- Demonic versus Tabular linkage

What do BEAGLE rules look like?


```
training data :
C:\beagwork\op\aircraft_dat1.dat
creation date : Tue Mar 8 10:11:56 2016
rule mode : tabular
64 16
fighting
[0, 1]
[0.4606961258558217, 0.5393038741441784]
$
( ( kgladen + loaddiff ) < ceiling )
( cannons > 3.5751266 )
$
00 [21, 2]
01 [0, 3]
10 [6, 24]
11 [0, 8]
[0.7037037037037037, -4.0]
$
```


Aircraft dataset (103 WWII warplanes)

10 datasets for initial benchmarking

Dataset	rows	cols	target	cats
aircraft	103	16	fighting	2
banknote	206	8	genuine	2
cardiac	113	20	survived	2
digidat	1024	13	numeral	10
echo	208	61	category	2
glasses	214	10	catcode	6
poleseed	210	8	seedtype	3
rand	256	16	dice	6
wine	178	14	cultivar	3
zoobase	101	18	type	7

Swiss 1000 Franc notes (Flury \& Riedwyl, 1988)

Brevity Bias: paying for parsimony?

- Conclusion:
- Size definitely reduced (mean 45\%)
- Slight drop in accuracy (?) probably worth paying

Demonic vs Tabular Rule Linkage

Rulemode testing: demonic - tabular, percent \& rulesize.

- Conclusion:
- Demonic linkage rules definitely larger, probably less accurate
- To be removed?

What about RUNSTER?

- Regression
- Using
- Naturalistic
- Selection
- To
- Evolve

■ Rules

Moons \& Planets

```
training data : c:\beagwork\ip\sats.dat
creation date : Fri Mar 11 14:38:31 2016
rule mode : reg1
336
reltime
[0.038244514, 0.058553387, 0.073129252, 0.093537415,
0.19047619, 0.247585724, 1, 2.335759272, 4.4880863, 61.25]
[33, 4.488086270393939, 12.949559136991365,
0.07360800099999999]
$
( $Root reldist * reldist )
$
0 [1, 0.219030957, 12.949559136991365]
[-0.0017889003012414605, -4]
$
```


Test on 'planets'

```
dateline Fri Mar 11 14:54:21 2016
progname C:\beagwork\p3\tree.py
id C:\beagwork\parapath\plansats.txt
testdat c:\beagwork\ip\planets.dat
targvar reltime
```

====holdout trial :

rank	safeness	case	name	pred:true	cellsize	abdsiff	diffsqrd
1	0.45	7	Uranus	$84.4991+84.01$	33	0.49	0.24
2	0.17	8	Neptune	$165.1079+164.8$	33	0.31	0.09
3	0.15	6	Saturn	$29.4725+29.4724$	33	0.00	0.00
4	0.13	5	Jupiter	$11.8679+11.87$	33	0.00	0.00
5	0.12	4	Ceres	$4.5954+4.6$	33	0.00	0.00
6	0.12	3	Mars	$1.8804+1.8805$	33	0.00	0.00
7	0.12	2	Terra Firma	$1.0002+1$	33	0.00	0.00
8	0.11	1	Venus	$0.615+0.6152$	33	0.00	0.00
9	0.11	0	Mercury	$0.2406+0.2408$	33	0.00	0.00
10	0.08	9	Pluto	$249.1291+247.87$	33	1.26	1.59
11	0.03	10	Eris	565.7393-559	33	6.74	45.42

'success' percentage $=90.91$
pearson correlation between predicted \& true vals $=1.0$
spearman rank-correlation between predicted \& true vals $=1.0$
mean abs.error $=0.8003$
mean error ^ $2=4.3034$

Or in R, if you prefer

```
runster_regrule = function (vals,stab) {
    ## input vals should be a l-row dataframe with appropriate colnames.
    ## target variable is reltime.
    ## rule mode is reg1.
    rule = c() ; bins = c('0','1')
    catlist =c(0.038244514, 0.058553387, 0.073129252, 0.093537415, 0.19047619, 0.247585724, 1,
2.335759272, 4.4880863, 61.25)
    priorvec = c(33, 4.488086270393939, 12.949559136991365,0.07360800099999999)
    subrules = 1
    ## compute rule values :
    rule[1] = (beag_root(vals$reldist) * vals$reldist)
    p = 0 ; b = c()
    while (p < subrules) {
                                    p = p + 1 ## early-r, late-py
                                    v = rule[p] ; b = c(b,v) ## omit if tabular
                }
    ## reg1 mode :
    predval = v ## omit if tabular
    b = '0' ; cellvals = priorvec ## omit if tabular
    cellsize = priorvec[1] ; standev = priorvec[3] ## omit if tabular
    smalldif = priorvec[4] ## should work for both
    ## tabular mode :
    return (list(cellcode=b,predval=predval,standev=standev,smalldif=smalldif,cellsize=cellsize))
    }
## regression rule ends.
```


What next?

- For me
\square Plenty of software engineering
\square (plus documentation!)
\square (with help?)
\square "None of the above" categorization
- Whither GP?
\square Genetic bottleneck?
\square Mass extinction?!

4 billion years of field testing can't be bad. (Can it?)

Stuck at a local optimum?

- Why do I have to rewrite BEAGLE; why didn't it rewrite itself? It's had over 30 years!
- Why does AlphaGo use simulated neural nets and reinforcement learning?
- Why doesn't Google-Translate learn through GP?

3 Billion Years of Stromatolites

The Task: Dealing with Exponentially Hard Problems in Polynomial Time

■ Fitness / Feedback:
\square Inconsistent
\square Sporadic
\square Multi-dimensional

- Robust Representations:
\square Andreas Wagner's genotype networks

Ecosystemic optimization?

■ "Coral Reef Computing"?
■ (before the door closes ;-)

Would success be worse than failure?

- Big Business + Big Data = Big Trouble

Thank you for your attention.

■ -

Recommended reading

Banzhaf, W. et al. (1998). Genetic Programming: an Introduction. Morgan-Kaufmann.
Eiben, A.E. \& Smith, J.D. (2003). Introduction to Evolutionary Computing. Springer-Verlag
Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.
Koza, J.R. (1992). Genetic Programming. MIT Press.
Poli, R. et al. (2008). A Field Guide to Genetic Programming. www.gp-field-guide.org.uk
Wagner, A. (2011). The Origins of Evolutionary Innovation. Oxford: O.U.P.

Websites

- http://en.wikipedia.org/wiki/Evolutionary computation
- http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
- http://www.genetic-programming.org/
- http://www.ra.cs.unituebingen.de/software/JCell/tutorial/ch03s05.html
- http://bionik.tu-berlin.de/institut/
- http://cswww.essex.ac.uk/staff/poli/gp-fieldguide/toc.html
- http://www.cems.uwe.ac.uk/~jsmith/ecbook/ecbook.html
- http://www.ieu.uzh.ch/wagner/research.html

Ancient versus Modern (binary benchmarks; golden ratio train/test)

Dataset	BEAGLE85 percent correct on test data	BEAGLE85 rule size	Py BEAGLE percent on test data (median of 5 runs)	Py BEAGLE median rule size	BEAGLE85 beats how many (of 5)?	RPART tree \% on test data
$\begin{aligned} & \text { Aircraft } \\ & \text { (bombing }>0 \text {) } \end{aligned}$	87.18	14	76.92	4	5	71.79
Banknote (genuine > 0)	98.73	8	98.73	5	2.5	98.73
$\begin{aligned} & \hline \text { Cardiac } \\ & \text { (survived = 1) } \end{aligned}$	67.44	32	69.77	9	1.5	62.79
Echo (Category > 15000) "rock" vs "mine"	70.89	28	72.15	18	2.5	69.62

Dealing with unseen categories

dateline	Fri Mar 18 15:05:57 2016
progname	$C: \backslash b e a g w o r k \backslash p 3 \backslash l e a f . p y$
id	$C: \backslash b e a g w o r k \backslash p a r a p a t h \backslash b o t l a b s . t x t ~$
testdat	$c: \backslash b e a g w o r k \backslash i p \backslash b o t t e s t . d a t$
targvar	catname

====holdout trial :

rank	strength case	textname	
1	0.97	2	saltaire_pride.txt
2	0.97	1	greene_king_ipa.txt
3	0.97	0	bud_strong.txt
4	0.96	21	paris_street.txt
5	0.96	20	la_paz_merlot.txt
6	0.96	19	ringtons_extra_fresh
7	0.96	18	folkingtons_elderflo
8	0.96	14	belvoir_elderflower_
9	0.96	13	Theo_749f.txt
10	0.96	12	sonn109.txt
11	0.96	11	rosquijeau_breton_ci
12	0.96	10	old_mout_cider.txt
13	0.96	9	obertin_calvados_vso
14	0.96	8	morrisons_lowalcohol
15	0.96	7	montano_sidro_italia
16	0.96	6	Lincoln1863Gettysbur
17	0.96	5	kopparberg_cider.txt
18	0.96	4	aspall_suffolk_cyder
19	0.86	3	aspall_golden_malt_v
20	0.68	17	fentimans_victorian_
21	0.68	16	fentimans_ginger_bee
22	0.68	15	fentimans_dandelion_

pred:true	cellsize	predvals	
beer + beer	43	0.98	0.02
beer + beer	43	0.98	0.02
beer + beer	43	0.98	0.02
wine + wine	44	0.02	0.98
wine + wine	44	0.02	0.98
wine ? soft	44	0.02	0.98
wine ? soft	44	0.02	0.98
wine ? soft	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
wine ? misc	44	0.02	0.98
beer ? misc	9	0.93	0.07
beer ? soft	3	0.84	0.16
beer ? soft	3	0.84	0.16
beer ? soft	3	0.84	0.16

Naturalists' Selection

The (Patrick?) Matthew Effect

■ The "Matthew Effect"
\square [Stigler's Law of Eponymy]
■ "The differences of Mr Matthew's view from mine are not of much importance: he seems to consider that the world was nearly depopulated at successive periods, and then re-stocked;" C. Darwin (1861). Origin, third edition, historical sketch.
\square [Punctuated equilibrium?]

The Matthew Effect (chapter \&

 verse)- 26 His master replied, 'You wicked, lazy servant! So you knew that I harvest where I have not sown and gather where I have not scattered seed? 27 Well then, you should have put my money on deposit with the bankers, so that when I returned I would have received it back with interest. 28 'So take the bag of gold from him and give it to the one who has ten bags. 29 For whoever has will be given more, and they will have an abundance. Whoever does not have, even what they have will be taken from them. 30 And throw that worthless servant outside, into the darkness, where there will be weeping and gnashing of teeth.' [NIV]

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

"I believe that if Watson and Crick had not existed, the insights they provided in one single package would have come out much more gradually over a period of many months or years. Dr. B might have seen that DNA is a double-strand helix, and Dr. C might later have recognized the hydrogen bonding between the strands. Dr. D later yet might have proposed a complementary purine-pyrimidine bonding, with Dr. E in a subsequent paper proposing the specific adenine-thymine and guanine-cytosine nucleotide pairs. Finally, we might have had to wait for Dr. G to propose the replication mechanism of DNA based on the complementary nature of the two strands. All the while Drs. H, I, J, K and L would have been confusing the issue by publishing incorrect structures and proposals." Gunther S. Stent (1972). Scientific American, 227, p. 90.

Why am I here?

■ "Truly new things one finds only in one's youth. Later one becomes more experienced, more famous, and dumber."

- Albert Einstein to Heinrich Zangger, 6 July 1917. (Tr. V. Tekavec; D. Overbye, 2000.)

An example rule, vintage BEAGLE

An example BEAGLE rule, current style

```
training data : C:\beagwork\op\cardiac_dat1.dat
creation date : Sun Mar 6 11:03:01 2016
rule mode : tabular
70 20
survived
[1, 2]
[0.5729490168751578, 0.42705098312484224]
$
( 63 > ap )
( 9 - uo )
$
00 [16, 6]
01 [19, 5]
10 [7, 0]
11 [3, 14]
[0.44, -3.0]
```

\$

A rule with string tests

```
training data : c:\beagwork\ip\elements.dat
creation date : Mon Mar 14 17:40:26 2016
rule mode : tabular
118 9
Block
['d ', 'f ', 'p ', 's ']
[0.2961250874843386, 0.24775602355205217, 0.28092892463013924, 0.17518996433347006]
$
( ( Atomic.no. > 3.3446655 ) \ ( Group > 2.13103 ) )
( Group < 12.9241236 )
( ( Description ? `Transition metal`) + ( Description ? `?`) )
$
000 [0, 0, 0, 1]
001 []
010 [0, 0, 0, 13]
011 []
100 [0, 0, 31, 0]
101 [0, 0, 5, 0]
110 [2, 28, 0, 0]
111 [38, 0, 0, 0]
[0.9743589743589743, -5.0]
$
```


Bottlabs rule

```
Resultant rule from all training cases :
(Rule size = 2 )
training data : c:\beagwork\ip\bottrain.dat
creation date : Sun Mar 13 14:59:24 2016
tabular
18 161
catname
['beer', 'wine']
[0.5278640450004206, 0.4721359549995794]
$
brewed
barley
$
00 [0, 44]
01 [9, 0]
10 [3, 0]
11 [43, 0]
[1.0, -1.0]
$
```


Round the emerald isle

Evotour of Ireland, dist=854.

Crossover operators

- Point crossover :

> abcdefghij

0123456789
abcd456789

- Uniform crossover :

> abcdefghij

$$
0123456789
$$

0b2345g7i9

