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Abstract

Despite an ever-increasing abundance of extralinguistic electronic information (audio

files, video recordings, event logfiles etc.), data in the form of text is still a

fundamental resource for researchers in a wide variety of fields. Social scientists, for

example, frequently spend a great deal of time and effort recording, transcribing,

segmenting, and categorizing segments of natural language. Each segment may often

be only a few words in length. Natural-language text, whether written language or

transcribed talk, is gathered in situations as diverse as interviews, online communities,

email, face to face conversations, and chatrooms. Researchers in many disciplines use

such data for a variety of purposes, typically after assigning categorical codes to short

stretches of their texts.

The present paper reports on the progress on the CodeLearner project, which applies

machine-learning techniques to assist in the categorical coding of short text segments.

We focus particularly on two issues raised by the attempt to automate this analytical

process: firstly, the inescapably iterative nature of the process of training a computer

system to emulate an analyst's coding decisions; secondly (and consequently) the fact

that such a system must predict its own future performance in order for this

iterative process to terminate without wasted effort. Given that most coding schemes

are generated and/or refined during analysis, adding self-prediction to the learning

system is a necessity: it enables the researcher to re-train it at any convenient interval

-- for instance, after coding every twenty or fifty new instances -- and have it estimate

its own accuracy at various future points. This allows early exit from problems where

the learning system proves incapable of the categorization task or finely-judged effort
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in situations where it is capable of reaching a sufficient accuracy level. In either case,

human effort is saved.

Empirical trials on five text corpora suggest that a simple three-parameter model

enables the computer system to predict its own future "learning curve" with sufficient

accuracy to make iterative computer-assisted coding a practical proposition. It is

noted that success in this enterprise will have methodological implications: it will

make feasible an incremental, exploratory approach to machine-assisted coding, thus

opening up areas of research where the coding task would previously have been

dismissed as too arduous.

Keywords: Active learning, Applied linguistics, Bayesian methods, linguistic

computing, machine learning, Markov models, qualitative computing, self-prediction,

text classification.

1. Introduction

In linguistics and many branches of the social sciences, researchers must spend a great

deal of time and effort coding or annotating segments of text. A number of

researchers have therefore proposed employing machine-learning methods to ease this

task (e.g. Daelmans & van den Bosch, 2005; Donmez et al., 2005). However, existing

machine-learning tools tend to work on the assumption that the user has a sufficiently

large training set of instances which have been pre-categorized with "gold standard"

category labels. In other words, they are not very well suited to the situation of the
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researcher who has a novel or non-standard coding scheme (typical in the social

sciences) and wants to code as few instances as possible and then let the learning

system classify the remainder, but has no way of estimating how many instances will

have to be coded to reach a satisfactory performance level.

This issue has been addressed within the computational linguistics community under

the banner of "active learning" (Mackay, D., 1992; Cohn et al., 1996; Jones et al.,

2003; Becker et al., 2005). In an active-learning approach the human expert gives

category labels to a batch of instances and then learning system chooses which of the

unlabelled cases should be in the next batch to be coded by hand -- this procedure

being repeated until a criterion level is reached. In some problem domains this kind of

example selection can have a dramatic effect. Becker et al. (2005) give an example in

the field of named-entity recognition where such a systematic selection of instances to

be coded by hand would result either in a reduction of 38.5% in the number of cases

to be coded compared to random selection or a reduction of 13% in the error-rate if

the same number of cases are coded.

Active learning thus allows an incremental approach to machine-assisted text

categorization. What it doesn't attempt to do is predict how many instances will need

to be hand-coded before a given criterion level of performance is reached. In

particular, it does not provide a mechanism for allowing a user to quit as soon as

possible in the not unusual situation where no amount (or no reasonable amount) of

training data will allow the learning system to reach an acceptable level of accuracy.

To do so would require that the system estimate, in advance, its performance level
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when any given number of additional training instances have been coded. This

function, which we term self-prediction, is the focus of the present study.

In the context of computer-assisted categorical coding of text segments, it is important

that the system be able to predict from a relatively small batch of hand-coded

examples what its likely future performance will be on a much larger set. This is

because the user of such a system will typically operate within a decision-making

loop of the following general nature.

 code a batch of text segments manually;

 test the supervised learning system on the cases coded so far (using a form of

resampling such as cross-validation to avoid biased error estimates);

 decide which of the following options to take:

o stop, since the desired accuracy level has been obtained;

o continue to code more training cases because the required accuracy

can be reached with more training data;

o abandon the attempt since the accuracy criterion will never be reached

or reached only with excessive effort.

The rest of this paper describes an empirical evaluation of three different methods of

self-prediction. In section 2 we describe the five corpora used in this evaluation study.

Section 3 outlines the learning algorithm employed. Section 4 describes the three self-

prediction models tested. Results are presented in section 5 and discussed in section 6.
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2. Trial data sets

Our five trial data sets are intended to represent a cross-section of the kinds of

categorical coding tasks that arise with natural-language data. Brief descriptions of

them are given in Table 1.

Table 1. The five trial data sets. [about here]

Our initial dataset, the Cardiac learners' data, reflects our concern with human

learning, and in particular the effect of self-explanation on learning. Self-explanations

are pieces of knowledge generated by an individual learner that state something which

is not explicit in the information they are learning from (Chi et al., 1989). This is of

interest because learners develop a deeper understanding of the material they are

studying if they give more self-explanations. A study was conducted in which learners

studied either abstract or realistic diagrams (Ainsworth et al., 2007) of the human

cardio-vascular system. While doing so, they were encouraged to verbalize their

reactions to the materials presented. The transcripts were segmented and coded

according to the nature of the utterance (paraphrase, self-explanation statement, or

monitoring statement). The learning system's task is to replicate this three-way

classification.

The second dataset consists of a selection of texts by Alexander Hamilton and James

Madison, the two main authors of the Federalist papers, which were published in

1787-1788 and have never been out of print since. These essays gave rise to a
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celebrated and difficult case of disputed authorship which was subject to a ground-

breaking stylometric analysis by Mosteller & Wallace (1984 [1964]) and which has

become an accepted benchmark in the field of authorship attribution. Further details

can be found in Holmes & Forsyth (1995). For the present investigation it should be

noted that only undisputed papers by the two authors were chosen, 17 by Hamilton

and 14 by Madison. In addition, two state of the union addresses given by Madison

when he was president (in 1811 and 1813) were added to make the amount of text by

both authors more nearly balanced. Note also that the unit of analysis in this problem

was the paragraph: the classification program's task is to classify individual

paragraphs according to their author, not whole documents. Clearly classifying

paragraphs (mean size 145 words) is a more challenging task than classifying entire

documents (mean size over 2500 words). Even so the average length of text segments

to be classified in this problem was the longest of our five data sets.

The third dataset consists of a total of 1810 (fictional) utterances from sixteen novels

by Agatha Christie. Eight of these novels featured Jane Marple and eight featured

Hercule Poirot as the lead detective. All quoted items of dialogue ascribed to these

two personages were extracted and saved in 16 separate files. Then the words "Jane",

"Miss" and "Hercule" were replaced by "X" while Marple and Poirot were replaced

by "Y". (Miss Marple is in fact seldom referred to as "Jane" by her creator.) The task

of the learning system is to assign each saying to its putative speaker.

The fourth dataset comes from an unpublished report by one of the present authors

(Forsyth, 2004) and consists of free-form comments made by respondents in a survey

designed to evaluate a management training programme. These free-text responses
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(average length less than eight words) were categorized by hand into one of 14

thematic categories, of which the first four were AO, CC, DT and GD -- standing for

Administration & Organization, Course Content, Duration & Timing, and Group

Dynamics, respectively. Two examples are: "subject matter varied from expectations"

(CC), and "input from other delegates helped" (GD). The program's task is to assign

each short text segment to its correct thematic category. This is intended to represent

the kind of problem that arises in political or consumer surveys, for example. Success

in this enterprise would have important practical implications in market research and

allied fields.

The fifth dataset is the Maptask corpus (Anderson et al., 1991) which is publicly

available from the Human Communication Research Centre, Edinburgh. This corpus

consists of 128 dialogues generated by students at Glasgow who were undertaking the

Map Task (Brown et al., 1984). In the Map Task one participant, the instruction giver,

has a sketch map with a route marked on it and the other participant, the instruction

follower, has a map without this route. The instruction follower has to draw a path

reproducing the route, as accurately as possible, on his or her map. Neither party can

see the other's map, and the maps have a small number of divergences which

necessitate certain navigational negotiations. The resultant conversations have been

transcribed and divided into a total of 27,084 moves, each of which is assigned to one

of 13 dialogue-act categories according to its pragmatic function within the discourse,

namely: Acknowledge, Align, Check, Clarify, Explain, Instruct, Query-w, Query-yn,

Ready, Reply-n, Reply-w, Reply-y or Uncodable. For more information on the

dialogue acts, see Carletta et al. (1997). The program's task is to assign each move to
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its appropriate class simply on the basis of the text constituting that move (on average

less than six words).

Thus these five data sets represent a variety of text-classification tasks of practical

importance. Information about the sizes of these data sets is shown in Table 2.

Table 2. Characteristics of the five data sets. [about here]

3. Learning algorithm

A large number of algorithms has been used for text classification (e.g. Yang, 1999;

Stamatatos et al., 2001; Sebastiani, 2002; Peng et al., 2003). The algorithm we chose

for our initial explorations is essentially a generalization of that described in Khmelev

& Tweedie (2001), which has been shown to give good results in the area of

authorship attribution in both English and Russian. This algorithm -- which itself is a

variant of the widely-used Naive Bayes Classifier, as described, for instance, in

Mitchell (1997) -- creates a simple Markovian model of the language in the training

dataset and uses Bayesian inference to arrived at probabilistic category assignments

(on training or test data). Hence we term our generalization of it a Bayes-Markov

Classifier (BMC).

The advantages of this simple and robust algorithm include the following: it requires

no pre-processing step to select features (in effect, all features are used); it requires no

external support software, such as taggers, or lexicons; and it could potentially be

applied to languages other than English (though in this paper we report only trials on
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English texts). Moreover, it employs a Bayesian inferential framework, which has

served as the basis for several practical text-categorization systems, such as spam

filtering (Sahami et al., 1998). However, we do not wish to claim that this algorithm is

the best possible for this purpose, only that it achieves acceptable accuracy levels,

since the major focus of this investigation is the ability of the system in which the

classifier is embedded to forecast its own future performance (see section 4). We plan

to test alternative classification algorithms in due course.

3.1 The Bayes-Markov classifier

The system is as described by Khmelev & Tweedie (2001) with two extensions:

1) their system used character bigrams (pairs) as the basis for its language model,

whereas ours permits n-grams of any length and allows word-based as well as

character-based n-grams, and is thus more flexible;

2) their system simply ignored attributes with a zero frequency in the training

data, whereas ours uses the so-called "m-estimate" procedure (see, for

instance, Cestnik & Bratko, 1991) which has the side-effect of attenuating

extreme probabilities, including zero and one; hence no attributes are

completely ignored.

Our algorithm is also very similar to that of Peng et al. (2003), the only differences

being that ours uses a different smoothing technique (item (2) above) and that it

allows words as well as characters to be the basic units.
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The terminology for n-gram length is not consistent in the literature. In the present

paper n refers to order of the underlying Markovian model (cf. McMahon & Smith,

1998), or equivalently the length of the prefix or context in which the probability of a

particular event (character or word) is being estimated. For example, in character

mode with a n-gram length of 2, and a string "pho" the system would use the

conditional probability

P("o" | "ph")

i.e. the probability of finding an "o" immediately after the bigram "ph" as the basis for

its computations. (Some researchers would call this an n-gram size of 3, as it involves

three successive tokens, e.g. Oakes (1998: 243).)

For the experiments described below, the distinction between upper and lower case

letters was ignored.

3.2 Operational framework

From our point of view, the operational framework is more important than the

classification algorithm it contains. In this case, the framework is a program, written

in Python, that acts as a test harness. This repetitively selects random subsamples, of

increasing sizes, from the full data set as training sets and selects disjoint random

subsamples, of fixed user-specified size, as testing sets. This enables analysis of the

algorithm's performance as the number of training instances increases, and permits the

plotting of "learning curves" which illustrate the relationship between the amount of

training data and the accuracy of classification (on unseen hold-out data).
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We do not simply specify the accuracy of the classifier using (almost) the whole data

set, as is typically done using the method of n-fold cross-validation, because we also

want to investigate whether the system can predict its own success rate on (almost)

the whole data set (or indeed on any size of sample) from a smaller subsample.

The behaviour of the test harness program is outlined in pseudo-code below.

Obtain test-set size (N2) from user

For a user-specified number of repetitions

Set initial training-set size to N1 [normally zero]

While training-set size plus test-set size (N1+N2) does not exceed data set size

Pick a random subsample of size N1 as training set

Pick a disjoint random subsample of size N2 as testing set

Train classifier (e.g. BMC) on training data

Test classifier on testing data

Record results

Increment N1 by user-specified increment (N3)

Append results to file for subsequent analyses

When the size of the training sample (N1) is zero, the classifier simply makes a

random category choice with probability 1/K, where K is the number of categories.

This baseline behaviour corresponds to complete ignorance, where the classifier does

not even have information on the relative frequency of the categories.
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4. Prediction models

It seems natural, when seeking ways of predicting the behaviour of a learning system,

to begin searching in those disciplines that concern themselves with adaptive or self-

improving natural systems, especially animate organisms or commercial entities.

Learning curves of various kinds have been studied since the time of Ebbinghaus

(1913 [1885]). In Psychology, during the heyday of behaviourism, a number of

attempts were made to fit simple mathematical equations to data derived from

experiments on humans, pigeons, rats or other animate agents. Of these, perhaps the

most influential has been that of Clark Hull (1943) which takes the form of an

exponential formula

Y = a + b * (1 - 10 ^ (c*x))

where Y is a performance index (in Hull's terms, evidence of the theoretical construct

habit strength) and x is the number of learning trials that the organism has been

subjected to. The coefficients a, b and c are parameters to be estimated from data.

(Coefficient a can be omitted if the initial performance level is zero, so a 2-parameter

version is often quoted, but a zero intercept cannot be assumed in our case, where

guesswork gives a non-zero success rate.) This formula has been criticized and the

theory behind it amended in various ways, most notably by Rescorla and Wagner

(1972), but even modern versions are "based on the assumption that the rate of growth

is proportional to the amount of growth still possible" (Bolles, 1979: 94) which

implies that the mathematical structure remains an exponential form.
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A separate tradition of modelling learning curves (also called "experience curves")

has developed in the field of Management Science, originating from an article by

Wright (1936). In this context a typical application is predicting the labour cost or

materials cost per unit of a given product as the number of units manufactured

increases. This is found to decrease systematically as the factory or firm gains

experience of making the product. Wright proposed a power law of the form

Y = a + b * x ^ c

where Y is the output measure, such as cost per unit manufactured, and x is the total

number of units manufactured. A number of alternative formulae have been proposed

(see Yelle, 1979) but by far the most popular remains Wright's original power law

(e.g. Nahmias, 2004).

It should be noted that whether a learning curve slopes upwards or down depends on

whether a cost index, such as effort or time, or a success index, such as proportion of

correct responses, is being measured. The direction, however, does not change the

structure of the model, only the sign(s) of certain coefficients.

To address the issue of how well a learning system such as ours could predict its own

performance, we decided to compare these different formulae -- one deriving from the

work of Wright (1936) as typically applied in business and economics, one deriving

from the work of Clark Hull (1943) as developed in Psychology. In addition, a third

formula, also using three parameters, was composed for the present purpose. This is a
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simplification of the double log-inverse formula used in some branches of

econometrics, e.g. by Saxon (1975) to forecast food consumption as a function of

income.

Y = a + b * ln(x+1) + c * 1/(x+1)

In our variant of this formula, Y is the result (success rate) and x is the training-set

size; ln() is the natural logarithm.

The three models under consideration are listed in Table 3.

Table 3. Three models of the "learning curve". [about here]

All three formulae have equivalent degrees of freedom in the sense of having three

adjustable parameters. These parameters were optimized by using the non-linear

regression method nls() in R (Crawley, 2002), and their quality was assessed by the

mean squared error (MSE) criterion.

5. Results

The system was run on all five trial data sets in 2 modes, word mode with n-gram size

of 1 (W1) and character mode with an n-gram size of 2 (C2). Pilot studies have shown

that these n-gram sizes were usually good choices for the two different modes. Thus

the three prediction formulae were compared ten times. Table 4 gives details of the

experimental runs.
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Table 4. Details of experimental trials. [about here]

In each case the step size was chosen to give 20 equally-spaced points along the range

of training-set sizes at which the system was trained and tested. The training and test

sets were always disjoint randomly chosen subsamples of the full dataset.

5.1 Accuracy of classification

Although endpoint accuracy of the classifier is not our primary concern in this paper,

for completeness Table 5 summarizes the results on the five test problems by giving

for each of the datasets the percentage of correct decisions made on the test set by the

BMC when trained on the largest training-set size for that dataset.

Table 5. Classification accuracy (% correct decisions) on trial datasets. [about here]

The column showing the most frequent category in the dataset is included mainly to

show that the BMC is always comfortably superior to the strategy of guessing the

most frequent category label. The final column, expected chance success rate is

calculated according to a formula given in Klecka (1980) derived from that originated

by Mosteller & Bush (1954), i.e. the product of the proportions in each category. This

is even more comfortably exceeded by the actual success rates.

The kinds of relationship found between size of training set and classification

accuracy are illustrated in Figures 1 and 2 below. Figure 1 shows a rapid initial rise
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followed by early deceleration towards a plateau. Figure 2 shows a slower but steadier

rise.

Figure 1. Boxplot illustrating learning system's progress on Cardiac dataset. [about

here]

Figure 2. Boxplot illustrating learning system's progress on Federalist Data. [about

here]

All "learning curves" have similar overall shapes, but with important differences in

slope along their lengths. In general, it is likely that simpler methods will show faster

learning in the early stages but slower improvement as the amount of training data is

increased. Thus, in order to help the user decide how many examples need to be

expertly encoded, it becomes important for the system to model the shape of its own

learning curve.

5.2 Accuracy of self-prediction (50/50 split)

There are several ways that the accuracy of a self-prediction model could be assessed

and since this is a novel field no accepted standard method exists. In the present

investigation the following procedure was adopted. First, for each of the five datasets,

a split-point was made at the nearest training-set size to half the size of the full
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dataset. Next the parameters of all three models were optimized, using the nls() non-

linear regression function (Crawley, 2002) of the statistical package R, on the

accuracy results for all training-set sizes up to the split-point. Then the three formulae

were applied to predict the accuracy results of all training-set sizes greater than the

split-point. This enabled interpolation accuracy to be measured by the mean of the

squared errors (MSEs) between the predicted and the actual values up to the split-

point, and extrapolation accuracy to be measured by the mean of squared errors

(MSEs) between predicted and actual values beyond (greater than) the split-point.

The rationale for starting with a split point at half-way is that an equal split makes

fewest a priori assumptions about the relative balance between two competing

desiderata: having as large an interpolation set as possible to enable accurate

parameter estimation, and having as large an extrapolation set as possible to gain a

realistic assessment of self-prediction in the same context as the envisaged practical

application, i.e. predicting the learning system's future accuracy on a larger training

sample given a smaller one.

Figure 3 illustrates the curve-fitting and assessment process graphically using the

Fictecs dataset.

Figure 3. Interpolation and extrapolation on Fictecs data: dotted line = Exponential

model; dashed line = Power law; solid line = Log-inverse formula. [about here]
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In this diagram, the open circles represent classification accuracy scores achieved by

the learning system on test data over a range of training-set sizes. In this case there are

100 replications at each training-set size. The solid line depicts the relationship

between the y-values (percentage correct decisions on test data) and the x-values (size

of training sample) according to the Log-inverse formula. The dashed line represents

the same relationship as predicted by the Power-law formula. The dotted line is the

same relationship as predicted by the Exponential formula. The gap in the lines near

the midpoint shows where interpolation ends and extrapolation begins, with

interpolation on the left and extrapolation on the right.

Inspection of the right-hand (extrapolated) half of this graph reveals what might be

called a "Goldilocks effect"1: the Power-law model makes forecasts that are

somewhat too high; the Exponential model makes forecasts that are too low; while the

Log-inverse formula gives forecasts in between the other two. This general pattern,

with the Log-inverse model giving "middling" forecasts, is found in all ten trials.

Table 6 summarizes the results of these trials (five datasets in two modes). This table

gives the mean squared deviations between the models' predicted (extrapolated)

values and the true accuracy values for all three models on all ten trials. Higher MSE

scores indicate worse predictions.

Table 6. Mean squared error scores (MSEs) between extrapolated and actual

accuracies (50/50 split). [about here]
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It is evident from these figures that the Exponential model performs poorly. Of the

three models, it has the highest MSE score (i.e. is the least accurate) in every single

case. This is doubtless because the Exponential learning-curve formula has a hard

asymptotic maximum, whereas the other two models allow continued growth, albeit

decelerating. By contrast, the Log-inverse model has the lowest (best) scores in nine

of the ten trials.

The Exponential formula can be eliminated as a contender for the best of these three

self-prediction models on the basis of these results. As for the other two models, the

mean difference between the deviation scores of the Power and Log-inverse formulae

(last 2 columns in Table 6) is 3.61, in favour of the Log-inverse model. To test

whether this difference is significant, a paired t-test (2-tailed) was carried out. This

gave a statistically significant result (t = 2.55, df = 9, p = 0.03). This was confirmed

by a non-parametric test (Wilcoxon signed rank test, V = 52, p = 0.0144). To the

extent that these datasets are representative this indicates that the Log-inverse formula

is to be preferred for this kind of self-prediction task.

5.3 Accuracy of self-prediction (25/75 split)

However, since the practical application of these self-prediction formulae would be

under circumstances where the size of the extrapolated dataset would be substantially

larger than the data available for interpolation, a further test was performed, also

using MSEs but with the split made at the 25% point. Thus the quality of the

extrapolation is being assessed on data sizes up to four times as large as the largest

size available for the parameter optimization. This is clearly a more stringent, and

arguably a more realistic, test.
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Table 7 gives figures for the extrapolation accuracy of all three models on all five data

sets in both modes with a 25/75 split between interpolation and extrapolation. This is

the same information as given in Table 6 for the 50/50 split.

Table 7. MSE scores between extrapolated and actual accuracies (25/75 split). [about

here]

Once again the Exponential model performs poorly, having the worst error score nine

times out of ten, while the Log-inverse model performs relatively well, having the

best error score eight times out of ten.

These figures show that a 25/75 split does, as expected, pose a more severe test than a

50/50 split: in only 2 of the cells of Table 7 are the MSEs smaller (better) than the

corresponding scores in Table 6. The variability of the scores has also increased. For

each of the three columns the variance is greater for the 25/75 than the 50/50 split.

However, a variance-ratio test (two-tailed) reveals that only for the first two models is

this increase significant. (For the Exponential model, F(9,9) = 0.1732, p = 0.0155; for

the Power-law model, F(9,9) = 0.1104, p = 0.0030; for the Log-inverse model, F(9,9)

= 0.5799, p = 0.4294.)

This increase in variability entails a greater likelihood that the extrapolations will go

seriously astray, as illustrated by the example of Figure 4.
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Figure 4. Interpolation and extrapolation on Federalist data: dotted line = Exponential

model; dashed line = Power law; solid line = Log-inverse formula. [about here]

In Figure 4, the gap between interpolation and extrapolation comes between training-

set sizes 125 and 150. Here it can clearly be seen that the Power-law prediction

formula has seriously over-estimated the learning system's future accuracy.

Once again, the Log-inverse formula's extrapolations fall in between those of the

other two models. In fact this "Goldilocks" pattern, with the Log-inverse

extrapolations being intermediate, is again repeated for all ten trials.

5.4 Further findings

In order to carry out more detailed analyses, the data were first re-scaled. The need for

this re-scaling arises because the raw errors scores for the five different data sets are

very different. This can be seen by comparing, for instance, the MSE scores for the

Freetext with the Maptask data in either Table 6 or Table 7. To render the scores

comparable over the five data sets, each MSE score for extrapolation was divided by

the mean of the interpolation MSEs for the (three) models with the same mode on the

same dataset. These re-scaled data are ratio scores, and because MSEs are error scores

ratios greater than 1 signify that the extrapolation is less accurate than interpolation

for the same dataset (using the same unit mode) and ratios less than 1 signify that the

extrapolation is more accurate than interpolation for the given dataset and unit mode.

Using these rescaled data, a Bartlett test for homogeneity of variances was performed

on both 50/50-split and 25/75-split extrapolations. In both cases this revealed
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significant differences between the three groups: for 50/50-split, Bartlett's K-squared

= 32.02, df = 2, p < 0.00000001; for 25/75 split, Bartlett's K-squared = 18.242, df = 2,

p = 0.0001). Thus, not only does variability increase as the size of the interpolation set

goes down from 50% to 25% of the maximum (as indicated in the previous section)

but the three models differ in the variability of their scores. This precludes a

straightforward parametric analysis, such as Analysis of Variance.

The next step, therefore, was to check whether the two unit modes (C2 and W1)

differed significantly in terms of their MSE ratios. This was done by subtracting the

MSE ratio for each extrapolation in W1 mode from the corresponding MSE ratio in

C2 mode (same dataset, same formula) and applying a non-parametric Wilcoxon

signed rank test to the differences (n=30). The median of these differences was 1.2

(favouring the C2 mode slightly) but this was not statistically significant (V = 287, p-

value = 0.271). This was taken to imply that the analysis could proceed by lumping

the two unit modes together.

Having thus, in effect, removed the effect of differences in difficulty between data

sets, and having found that differences between unit modes could be ignored, the

effects of the two main factors under study in this investigation (model type and size

of interpolation set) can be summed up visually in a single image, Figure 5, below.

Figure 5. Mean MSE ratios for extrapolations, plus or minus 1 standard error, for all

three models in both interpolation conditions. [about here]
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This shows visually that:

 the extrapolation error gets larger as the amount of interpolation data is

reduced;

 its variability increases for each model as the amount of interpolation data is

reduced;

 the variability increases least for the Log-inverse model;

 the variability of the Exponential model is highest of the three in both

interpolation conditions;

 the MSE ratio (error score) of the Log-inverse model is lowest of the three in

both conditions;

 the MSE ratio of the Log-inverse model increases least of the three methods

(worsens least) as the interpolation set size is reduced from 50% to 25%.

As parametric analysis was deemed inappropriate (because of the inhomogeneity of

variances, noted above) a Kruskal-Wallis non-parametric comparison between the

three models was performed for both interpolation conditions separately. In both cases

the three groups of MSE ratio scores were found to differ significantly: for 50/50-

split, Kruskal-Wallis chi-squared = 16.88, df = 2, p-value = 0.0002161; for 25/75-

split, Kruskal-Wallis chi-squared = 14.59, df = 2, p-value = 0.0006803. This confirms

the visual impression from Figure 5 that the three models have different MSE ratios.

Since it was obvious from the raw data that the Exponential model was a poor choice

for this application, a separate 2-group comparison was also performed between the

MSE ratio scores for the Power-law and the Log-inverse models, which are not so

obviously differentiated in the diagram. Here the difference was not statistically
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significant with the 50/50 split (Wilcoxon rank-sum test W = 27, p-value = 0.08921)

but it was significantly different for the 25/75 split (Wilcoxon rank sum test W = 23,

p-value = 0.04326).

This implies that in the more realistic, and more stringent, 25/75 test the Log-inverse

formula's extrapolations are more accurate than those of the Power-law formula (as

well as being less variable). Given the foregoing results, if a "winner" of this contest

had to be declared it could only be the Log-inverse formula.

A subsidiary, perhaps counter-intuitive, finding arising from this comparison of

median MSE ratios is summarized in table 8.

Table 8. Median MSE ratio for all three models in both interpolation conditions.

[about here]

This shows that, on average, the mean squared error of the Exponential and Power-

law models is higher (worse) when extrapolating than interpolating. Anyone familiar

with machine learning will find this unsurprising: it corresponds to the common

experience of finding higher error rates on test data than on training data. However,

with the Log-inverse model, the position is reversed. It is actually more accurate, on

average, when extrapolating than interpolating.

This is a curiosity which, if repeated on a larger trial with a wider range of datasets,

would require explanation. It may simply be artefactual, arising because the rate of

change in slope of the second part of a learning curve is almost inevitably less than
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the first part. For the present, it can be taken as reassurance that the Log-inverse

formula, if used in practice, could quote its self-predictions with confidence intervals

that are unlikely to be optimistically biased -- a desirable characteristic.

MSE has certain desirable characteristics as a basis for error minimization, but since it

is a squared measure it is not easily interpretable in terms of the problem domain; so

as a more interpretable quality score the mean absolute deviations (MADs) between

the Log-inverse predictions and the true values in the 25/75 condition were calculated

at the highest testing size for each dataset in both unit modes. These ranged from

1.101 for the Maptask data in word mode to 5.741 for the Freetext data in character

mode, with a mean of 3.507. To put this in a practical context, when this model is

given a certain number of cases for interpolation its expected discrepancy in

extrapolating to the learning system's success rate on a dataset four times as large is

about 3.5 percentage points. Whether this is an acceptable level of discrepancy is

problem-dependent, but it seems to us that discrepancies of this order would not be

unreasonable in many practical applications.

Another finding perhaps worthy of remark emerged from this experiment: there was a

significant (negative) rank correlation between the size of the dataset and the error

scores for all three models. Thus extrapolations based on larger datasets tend to be

more accurate. This is only to be expected, but it means that even the best of these

formulae will not perform very well on small samples.
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6. Discussion

We do not claim that the Bayes-Markov Classifier (BMC) is a definitive solution to

the problem of categorical coding of short text segments. Nevertheless these initial

results seem promising, especially in view of the fact that the algorithm has access

only to the textual content of each short segment separately, with no contextual

information.

As far as self-prediction is concerned, the Log-inverse formula enabled the system to

predict its own future performance with greater accuracy and lower variability than

two alternative models from different academic disciplines, both backed by a

respectable body of research and practice developed over more than 60 years. This

formula is doubtless not the best that can be found. However, the ease with which

acceptable self-prediction can be achieved suggests that the reason for its rarity in

learning systems is not that it is inherently difficult but that the need for it has not

been recognized. This in turn means that addressing the needs of users with novel

coding schemes within an iterative machine-learning loop is feasible, thus opening

opportunities for numerous practical applications that would otherwise be considered

infeasible.

The scope of this study is limited, so more remains to be done. An obvious future line

of investigation is to test a wider range of self-prediction formulae. However, since

dozens of formulae with potential application to the present problem can be found in

various scientific literatures, and hundreds more could be concocted ad hoc, this could

be a never-ending labour. It may be best, if such an avenue is followed, to employ an
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evolutionary-computing methodology such as Genetic Programming (Koza, 1992).

This would involve specifying the atomic elements (functions, operators and

variables) from which a formula could be constructed, as well as a fitness function,

and allowing an evolutionary system to evolve a most-suited formula using the

technique known as symbolic regression.

Such an approach would finesse the need for a full and representative benchmark set

of test corpora. We have chosen five data sets that we believe to cover a reasonable

range of practical problem types, but we recognize that such benchmark collections

can always be improved. With symbolic regression, however, as long as the

evolutionary optimization method was integrated into the learning software, the

generation and optimization of the self-prediction function could be done on the

current user's data. There would be no need to find a "winning" formula over a

standard set of test problems: each user would have a bespoke formula suited to his or

her own data. (However, implementing such a system would require further research

as well as substantial software-engineering resources, so a simple yet robust formula

such as the Log-inverse will remain a valuable tool for some time to come.)

Another future prospect worth considering is the integration of self-prediction with

active learning. The two method share a common motivation but they are orthogonal

in the sense that any particular implementation of a trainable text-categorization

system could incorporate either or both or neither. In the long run, we envisage that

the state of the art will be to employ both methods.
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Notes

1 For readers unfamiliar with the fable of "Goldilocks and the three Bears",

Goldilocks is a little lost girl who stumbles upon an empty house in the forest where

she finds several groups of household items in threes, for example, three bowls of

porridge. When she tests one bowl it is too hot, another is too cold, but the third is

"just right".
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Tables (1-8)

Table 1. The five trial data sets.

Dataset Description Mode Task type

Cardiac:

Monologues of

learners studying

circulatory system

(Ainsworth et al.,

2007)

Verbalizations by learners

studying text or diagrams

explaining the workings of

the human blood-circulation

system

Spoken

monologues

Functional

coding

Fedpaps:

Federalist papers

(Hamilton et al.,

1992 [1788])

Political texts written by

Alexander Hamilton (n=17)

or James Madison (n=16)

[Undisputed essays only]

Written Authorship

attribution

Fictecs:

Dialogue segments

attributed to fictional

detectives

Quoted speech by either Jane

Marple or Hercule Poirot

from 16 detective novels

written by Agatha Christie

Written Stylistic

discrimination

Freetext:

Free-form responses

from user-feedback

questionnaires

Free-form text responses in

post-course student

satisfaction survey

Written Thematic

categorization

Maptask:

Map task dialogues

(Anderson et al.,

1991)

Conversations between

Scottish students working on

the Map Task (Brown et al.,

1984)

Spoken

dialogues

Dialogue-act

classification
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Table 2. Characteristics of the five data sets.

Dataset Size (words) Segments Mean segment

length (words)

Categories

Cardiac 23,330 1784 13.1 3

Fedpaps 84,594 583 145.1 2

Fictecs 50754 1810 28.0 2

Freetext 2083 264 7.9 14

Maptask 156310 27084 5.8 13
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Table 3. Three models of the "learning curve".

Formula Origin Type Typical Application

y ~ a + b * x ^ c Wright

(1936)

Power Business: predicting cost

per unit as number of units

manufactured increases

y ~ a + b * (1 - 10 ^ (c * x)) Hull

(1943)

Exponential Psychology: predicting

error rate as number of

learning trials increases

y ~ a + b * ln(x+1) + c *

1/(x+1)

Saxon

(1975)

Log-inverse Econometrics: predicting

consumption as income

increases
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Table 4. Details of experimental trials.

Dataset Text

segments in

full dataset

Range of

training-set

sizes

Step size Testing set

size

(unseen)

Repetitions

at each

training-set

size

Cardiac 1784 0 .. 1680 84 100 100

Fedpaps 583 0 .. 500 25 80 100

Fictecs 1810 0 .. 1700 85 100 100

Freetext 264 0 .. 200 10 64 100

Maptask 27084 0 .. 26000 1300 1000 50
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Table 5. Classification accuracy (% correct decisions) on trial datasets.

Dataset Segments

/ Categories

Mean

accuracy

(SD) in

character

mode, C2

Mean

accuracy

(SD) in

word mode,

W1

Percentage

frequency

of most

common

category

Percentage

success

expected by

chance

Cardiac 1784

/ 3

74.07

(4.81)

70.05

(4.06)

57.29 48.28

Fedpaps 583

/ 2

80.09

(4.04)

84.15

(3.83)

55.57 50.62

Fictecs 1810

/ 2

88.25

(3.05)

83.53

(3.90)

58.84 51.56

Freetext 264

/ 14

41.11

(5.57)

28.03

(4.67)

10.98 8.73

Maptask 27084

/ 13

60.40

(1.43)

60.40

(1.37)

20.69 11.39
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Table 6. Mean squared error scores (MSEs) between extrapolated and actual

accuracies (50/50 split).

Dataset Mode Exponential

formula

Power-law

formula

Log-inverse

formula

Cardiac Learners C2 26.71 23.18 21.86

W1 37.00 26.55 21.54

Federalist Essays C2 29.03 33.13 19.96

W1 31.38 26.07 17.01

Fictional Detectives C2 23.68 16.80 11.79

W1 21.83 15.14 13.81

Freetext Responses C2 50.28 33.68 32.35

W1 26.11 25.56 25.98

Maptask Dialogues C2 5.86 2.70 2.57

W1 11.37 2.29 2.14
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Table 7. MSE scores between extrapolated and actual accuracies (25/75 split).

Dataset Mode Exponential

formula

Power-law

formula

Log-inverse

formula

Cardiac Learners C2 33.84 31.97 25.86

W1 58.83 48.57 24.27

Federalist Essays C2 39.96 120.95 23.99

W1 75.23 34.46 19.03

Fictional Detectives C2 49.59 27.43 13.37

W1 35.46 15.44 14.08

Freetext Responses C2 113.94 35.60 40.40

W1 37.95 27.83 36.00

Maptask Dialogues C2 9.60 2.94 2.70

W1 19.32 2.13 2.08
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Table 8. Median MSE ratio for all three models in both interpolation conditions.

Exponential

Model

Power-law Model Log-inverse

Model

50/50-split condition 1.2226 1.0076 0.8212

25/75-split condition 2.3609 1.3239 0.9178
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Figures (1-5)

Figure 1. Boxplot illustrating learning system's progress on Cardiac dataset.
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Figure 2. Boxplot illustrating learning system's progress on Federalist Data.



44

Figure 3. Interpolation and extrapolation on Fictecs data: dotted line = Exponential

model; dashed line = Power law; solid line = Log-inverse formula.
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Figure 4. Interpolation and extrapolation on Federalist data: dotted line = Exponential

model; dashed line = Power law; solid line = Log-inverse formula.



46

M
ea

n
+-

1
S

E
M

S
E

ra
te

4.000000

3.000000

2.000000

1.000000

0.000000

formula
powrlogiexpo

4.000000

3.000000

2.000000

1.000000

0.000000

P
ercen

tag
e

availab
le

fo
r

in
terp

o
latio

n
25

50

Figure 5. Mean MSE ratios for extrapolations, plus or minus 1 standard error, for all

three models in both interpolation conditions.


