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VIEWPOINT

‘The strange story of the Perceptron’

Richard S. Forsyth
Department of Psychology, University of Nottingham, UK

Abstract. A number of bald assertions about the history and future of
neural computing are made. An alternative research agenda is proposed
which is a plea for pragmatism (in two parts).

‘In my opinion this problem of making a large memory available at
reasonably short notice is much more important than that of doing opera-
tions such as multiplication at high speed. Speed is necessary if the
machine is to work fast enough for [it] to be commercially valuable, but a
large storage is necessary if it is to be capable of anything more than rather
trivial operations. The storage capacity is therefore the more fundamental

requirement.’

The Renaissance of Connectionism

Connectionism (also known as
neuro-computing) is not new. As soon
as the digital computer was invented,
the leading figures in computing
research-—including Von Neumann,
Shannon and McCulloch— began
looking at the nervous system as a
source of inspiration for the design of
intelligent computer systems (Von
Neumann, 1958). However, the idea
that machine intelligence could be
achieved by mimicking the brain
became discredited in the mid-1960s
and has only recently been revived.
The story of the burial and rebirth of
neuro-computing is, in broad outline,
well known to most people in the field
of Artificial Intelligence (AI). There is
not room here to recount it in the detail
which it deserves, except to point out

Alan M. Turing (1947)

what is possibly the most curious
aspect of this whole curious affair;
namely the fact that a practical solution
to the problem that effectively killed off
the first phase of neural-net research
was known at the time of its fall from
grace (Widrow & Hoff, 1960; Widrow,
1987) and others were discovered soon
afterwards (Albus, 1971, 1981;
Aleksander & Stonham, 1979).

By the time that Minksy & Papert
(1969) wrote the epitaph for the first
phase of neuro-computing, researchers
were already turning away from the
connectionist paradigm. Minksy &
Papert’s book confirmed this trend by
showing that a particular device, the
Mark I Perceptron (Rosenblatt, 1958,
1962}, could not learn to solve the
exclusive-OR problem or other parity
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problems. Thus they erected
intellectual ‘KEEP OFF’ signs around
an entire field of computing research.

Their primary concern was whether
any training rule for simulated neural
networks could be proved to converge
on an optimum set of weights in a finite
number of trials. The dilemma they
posed was essentially this:

Convergence can be proved for
single-layer neural nets, but
single-layer networks cannot solve
parity problems; multi-layered
networks can solve parity problems,
but there is no proof of convergence
for them.

Not until the mid-1980s, when
various workers independently
discovered the back-propagation
algorithm, and proved that it would
converge with a multi-layered
feedforward network, was this
dilemma resolved. Yet in the meantime
the few workers who had persevered
with neuro-computing had found
several different ways of training
multi-layered networks, some more
effective in practice than
back-propagation.

Indeed one of the very earliest
workers in this field, Oliver Selfridge,
whose Pandemonium model (1955,
1959) antedated the Perceptron, had
worked successfully with multi-
layered networks from the outset,
without worrying over much about
convergence proofs.

Perhaps the best description of the
situation during the ‘wilderness years’
(1965-1985) was given by Bernard
Widrow in his invited speech to the
IEEE in June 1987:

The adapation rule, the golden rule,
is to assign responsibility to the
neuron or neurons that can most
easily assume it. It turns out it
works; we never published it. Why?
We couldn’t prove it; we were too
embarrassed. We couldn’t prove
that it converged. It was an
embarrassment. (Widrow, 1987)

In short, by 1963, Widrow & Hoff had
extended their delta rule to what they
called the MADALINE (Multiple
ADALINESs), but they could only
demonstrate empirically that it seemed
to work. Once the research community
had turned against neuro-computing,
however, empirical demonstrations
were no longer enough; and even when
Albus (1971) proved that a simple Mark
I Perceptron, modified to incorporate
an expansion recoder, could be taught
to solve the exclusive-OR problem
using either Rosenblatt’s or Widrow &
Hoff’s training procedure, it had no
effect on the widespread belief among
computer scientists that neuro-
computing was something that had
been tried and had failed.

It was not until

(a) a proof of convergence (for
back-propagation) had been found;
and

(b) a ‘changing of the guard’ had taken
place at Defense Advance Research
Projects Agency (DARPA).

that the resurrection of neuro-
computing took place. Point (a) made
neural-net computing respectable
again; while point (b) made it fundable.
The result is that we are now awash
with hype. Neural-net computing is
back in fashion and the number of
conferences, books, papers, products,



programs and workshops bearing the
terms ‘neuro’ or ‘neural’ in their title is
already uncountable.

That, then, is a brief history of this
subject. The question is: what policy
should a nation like the UK adopt
towards a technology with such a
chequered past? The rest of this
document attempts to provide answers
to that question.

1 Substantive issues

1.1 Don’t forget about memory

As the neuro-computing bandwagon is
well under way, and has been gathering
momentum for over two years, there is
little to be gained by merely stimulating
awareness, either in academia or in
commerce. That will happen anyway,
and to the extent that it is successful
will suck in imports, both hardware
and software, which have been
developed in non-EC countries.

In fact there is a case to be made—
though it should not be pressed too
strongly— for ‘counter-cyclical’
funding. This would entail sticking
with the IKBS paradigm, which over
the last 18 months has lost its
attractiveness (just at the point when
serious large-scale knowledge-based
systems are beginning to prove their
worth). However, while IKBS research
should not be summarily dropped as
‘yesterday’s fashion’, it is unrealistic
for a country which wishes to remain at
or near the forefront of technological
advance to ignore the neuro-computing
boom altogether.

So my own proposal would be to
concentrate on areas which are not
being over-exploited already in the
USA and Japan. This implies a
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preference for the memory rather than
the processing function of neural
networks.

It is a mistake to see neural networks
(natural or simulated) only as
processing devices: they are not just
parallel distributed processors, they
are also parallel distributed memories
at the same time. To call the human
brain a database engine is more
accurate than calling ita
supercomnputer. Yet the majority of
existing work on neuro-computing
concentrates on the processing aspect.
(See, for instance, excellent surveys by
Rumelhart & McClelland, 1986;
DARPA, 1988.)

Two workers who have stayed in this
field through boom years and bust and
whose work seems to me to have been
systematically undervalued are James
Albus and Igor Aleksander. Both in
their different ways have explored the
idea of the brain as a giant fuzzy
look-up table. Table look-up (even the
sophisticated kind exhibited by cMAC
and WISARD) is not very glamorous, but
it works; and it works by finding
parallelism where it is already latent
(in RAM) rather than trying to impose it
somewhere else (in the CPU).

A general emphasis on distributed
memory models (as opposed to
distributed processing models) would
therefore suit the UK as a central plank
of any national research programme.
There are two additional reasons for
advocating such an orientation:

(1) Igor Aleksander, one of the world
leaders in the field, is based at
Imperial College, London, and has
the nucleus of a ‘centre of
excellence’ already in place;
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(2) VLSI memories exist in vast
quantities exhibiting massive
parallelism which is currently being
exploited in the most unimaginative
possible way.

The second point may need further
elaboration.

It is an informal axiom of computer
science that one can trade speed for
space. That is to say, a program can be
made to run faster if it is allowed to use
more memory. Alternatively, memory
can in general be saved by using a more
powerful processor. This trade-off isa
general principle, and applies even
with the most advanced computer
architectures. Yet the vast bulk of
research into novel computing devices
has been concerned with parallelizing
the processing component (which has
turned out to be difficult) not with
parallelizing memory (which is easier).

CMAC (Albus, 1981) and WISARD
(Aleksander & Burnett, 1984) point
towards ways of exploiting the hidden
parallelism of distributed memory
systems, while most of the rest of the
world struggles to build parallelism
into multi-processor systems—
without conspicuous success. Here
then is an opportunity for world-class
research which, if handled carefully,
could lead to the capture of an
important market niche. It is my
contention that this area should be
singled out as a major and distinctive
constituent of a national research
programme in neuro-computing.

1.2 Don’t propagate back-propagation

The positive emphasis outlined above
on neural networks as memory devices
will need to be balanced by a negative

attitude towards an alternative class of
neural-net systems.

It is all too predictable that the
announcement of a national research
programme in this field will bring forth
dozens of proposals that amount to
little more than the application of a
‘connectionist cliché’ to yet another
problem domain. This connectionist

cliché can be described as a network
which

(1) has 2 or 3 internal layers;

(2) is fully interconnected between
layers;

(3) operates in feedforward mode; and

(4) is trained using back-propagation.

Back-propagation systems have
achieved some notable results (e.g.
Sejnowski & Rosenberg, 1987); but we
can do without endless variations on a
single theme. There is no need to waste
taxpayers’ money on such things, as
they will spring up of their own accord
in plague proportions. On the contrary,
to find projects that have a chance of
advancing human knowledge in this
area, it will be necessary to look for
work that breaks away from this cliché
in at least one respect. Specifically,
research worth funding is likely to
investigate neuro-computing
architectures that

(1) have many layers or do away with
rigid layering altogether;

(2) have neurologically plausible
degrees of fan-out between neurons,
probably randomly assigned and
possibly alterable;

(3) allow feedback during operation as
well as during error correction;

(4) are trained by a method attempts to
improve on back-propagation
(which is merely a gradient descent



technique and not a very efficient
one).

In a nutshell, a good rule of thumb for
picking projects that are likely to
uncover new knowledge would be:
Don’t back back-propagation (except
for teaching purposes).

2 Towards aresearch strategy

2.1 The Bletchley Park spirit

My personal preference is for a
Churchillian style of research
management:

Bring together a dozen or so bright
young graduates, mix in a few older
and wiser heads, dump them ina
group of Nissen huts out in the
English countryside, give them a
long list of insoluble problems
requiring urgent attention, starve
them of adequate funding, and stand
well back to await an explosion of
creative energy.

This method worked extremely well at
Bletchley Park from 1939 to 1945, but
was abandoned at the height of its
success, and is no longer favoured by
funding agencies.

Nevertheless the ‘Bletchley Park
spirit’ can be fostered even in
peacetime, provided that certain
pitfalls are avoided. The following
suggestions are intended to help in the
avoidance of some of the more serious
pitfalls.

2.2 Fuzzy objectives, and how to
clarify them

Any research programme should begin
with a clear set of objectives. In the
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present context it will be more
important than usual to set clear goals,
as neuro-computing systems can be
used for such a variety of purposes.

In theory, artificial neural nets can
compute any computable function,
being formally equivalent to Turing
machines (McCulloch, 1965). Knowing
this is not very helpful. Even being
more precise, and saying that
neural-net systems can be taught
input—output mappings of arbitrary
complexity, does not get us much
further. What we really want to know is
what can be done better with neural-net
systems than with alternative
techniques, and why. If neuro-
computing research is to be publicly
funded, it should be with a view to
plugging holes that exist in
conventional computingi.e. to doing
things with neural-net systems that
cannot be done, or are done badly, with
traditional techniques.

This gives us a shopping list of
desirable end-products:

(1) neural-net systems doing tasks that
cannot be done any other way;

(2) neural-net systems doing things
more efficiently than alternative
computing systems;

(3) neural-net systems integrating with
more conventional systems to
achieve results that would not
otherwise be feasible;

(4) theoretical work giving principled
reasons when and why neuro-
computing methods should be
chosen.

The objectives of the research
programme should be based on this list.
An additional objective should be the
promotion of syntheses between
competing approaches. An example is
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the learning system of Whitley (1989)
which uses a genetic algorithm to
optimize the weightings in a neural
network. This sort of cross-fertilization
between methods that were previously
seen as competitors is valuable in itself.

2.3 Antidotes to arm waving

Already there is plenty of excited talk
about neural nets and the wide blue
yonder. This needs no further
encouragement. To keep researchers on
the straight and narrow, there must be
an emphasis on practical results.

What we need is a suite of
benchmark problems, rather like the
test suites that are used to validate
compliance of PASCAL compilers with
the international standard. It would be
well worthwhile to setup a
clearing-house for neuro-computing
applications to maintain a list of test
problems and datasets. The items on
such a list could be culled from various
sources including, ideally, a trawl
round British industry seeking to
identify computing bottlenecks that
might be susceptible to a neuro-
computing solution. Jobs that are
already done well should not be
entirely ignored either. If a company
says ‘we already catch 96% of
component defects using statistical
methods’ that does not exclude the
possibility that they could catch 99%
with a better system.

Sets of recognized benchmarks tend
to arise as part of the folklore of a
discipline. An example is Lin &
Kernigan’s (1973) 318-node tour for
testing the merits of travelling-
salesman heuristics: it has become a de
facto standard. But there is much to be
said for formalizing the gathering of test

problems. Once an initial set has been
agreed, researchers can be invited to
submit proposals for attacking one or
more of these problems with the aim of
finding solutions that are faster, more
comprehensive or cheaper than
competing methods.

Here a sporting metaphor may be
helpful. The clearing-house could be
given the responsibility of conductinga
contest (the Euro-Neuro Computing
Championships, or some such) and
judging the performance of the
contestants. Some serious and explicit
thinking about

—allowances for different classes of
machine;

—standardization of benchmark
problems;

—scoring of speed versus accuracy;

and other difficulties brought into the
open by such an enterprise would, in
itself, justify the work involved. It
might even be possible to draw up a
‘tariff’— as in Olympic diving— based
on the practical pay-off expected from
solving each particular problem. This
would aid in the evaluation of all
projects, ot just the ‘competitors’.

2.4 Evaluation of individual projects

This brings us to the question of
evaluating projects after their
completion. Optimization requires an
objective function; learning requires
knowledge of results. Yet the
evaluation of research projects tends to
be done in a thoroughly unscientific
manner.

The number of papers published in
refereed journals by the project team is
not a good measure, but it is frequently
used for want of anything better. The



definition of success for individual
projects needs to be tightened up (along
lines outlined in Section 2.3) and
promulgated in advance to would-be
participants. This implies facing up to
the possibility of failure, which is often
more instructive than success.

During the writing of this piece, a
review of one of the deliverables of the
Alvey program, GLIMPSE, happens to
have crossed my desk. GLIMPSEis a
knowledge-based front-end for the GLIM
software package, which is a statistical
system for generalized linear
modelling. GLIM is not easy to use by
statistically untrained people, so it was
hoped that an expert front-end could
make it more accessible to
inexperienced users. This is what the
reviewer, a professional statistician,
had to say.

I needed to refer to [the manual]
constantly. This seems to defeat the
main aim and characteristic of an
Expert System, that it should be user
friendly and hence aid the user
through an analysis from beginning
to end. . . . the terminology was
intimidating and the explanatory
messages from the system were
unintelligible. (Al-Doori, 1989)

What went wrong?

We do not know, but it should be
somebody’s job to find out. Post-
mortems are not for the squeamish, but
they serve an important purpose.

2.5 Learning from past mistakes

What applies to individual projects
also applies to the research programme
in which they are embedded. The
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Alvey programme achieved much, but1
am not aware that any systematic
appraisal has ever been made of it’s
failure. Part of the reason is almost
certainly a feeling that it would be
tasteless to enquire too closely into the
things that did not go according to plan.

But if that attitude prevails, there is
little hope of improvement in future. Of
course there will be failures in a
programme embracing hundreds of
different projects; but it is vital to face
up to them. Unless both the success
stories and the failures are analysed
with the benefit of hindsight, and the
results of such analysis published, it is
inevitable that many mistakes will be
repeated and many successes will not
be copied.

2.6 Fat-cat funding, and how to avoid
it

There was a certain amount of
hand-wringing after the Alvey
programme ended concerning the lack
of participation by small firms; but no
administrative machinery has been put
in place to prevent a recurrence of the
same problem.

What is the point of pumping public
money into a company which could
fund the entire programme ten times
over but chooses not to risk investing
its ‘cash mountain’ in leading-edge
research? We might just as well pay
Richard Branson to organize a mission
to Mars in a hot-air balloon— at least
then the taxpayer would get
entertainment value.

Excessive take-up of funding by large
companies is especially galling in view
of the fact that most true scientific and
technical innovations arise from the
efforts of small teams or single
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individuals, usually working outside
the corporate ethos. Yet it could be
discouraged in a simple way: just
earmark a percentage of available
budget (20—25%) for groups composed
of fewer than 8 people, working for
organizations with annual turnovers
below a specified limit, asking for less
than £100,000, and proposing to use
off-the-shelf equipment in innovative
ways. (It is also most important that the
paperwork needed for small grant
applications be short and simple, and
that decisions should be swift.)

A good long-range prediction is that
even a small fraction of the total
resources distributed under such
conditions would produce more useful
results than the rest of the programme
put together.

2.7 Competitive research

Academic rivalry is a powerful
motivating force which is seldom
harnessed to constructive ends. The
proposed neuro-computing initiative
should be designed to promote it.

That is to say, teams from different
places should be allowed, and even
encouraged, to work on the same
problem, using alternative paradigms.
This would enable comparative quality
standards to be established on the
clearing-house problems. It would also
gather badly needed data on how well
different neuro-computing
architectures tackle different kinds of
task. More important, it would fill gaps
in our knowledge about how neural-net
techniques compare against

— statistical methods
—other kinds of machine learning
—knowledge-based systems

—conventional optimization
techniques

— genetic algorithms

— simulated annealing

and other approaches to the same sort
of problems. _

This implies that some of the groups
working under the auspices of the
neuro-computing initiative would not
be using neural-net methods at all, but V
would be part of a ‘control group’ for
purposes of comparison.

2.8 Conclusions

A research programme into clearly
defined areas within the field of
neuro-computing is likely to be
beneficial to the nation, but steps must
be taken to ensure (1) that clear
objectives are stated at the outset and
(2) that unusually thorough evaluation
is carried out (and published)
afterwards; otherwise much of the
potential benefit of such aresearch
effort will be lost.

Finally, it goes almost without saying
that such a programme should havea
European dimension, even though itis
primarily British. There already is an
ESPRIT project under way in this area
centred at AERE, Harwell (ANNIE:
Applications of Neural Networks in
Industry in Europe). It would be logical
to treat ANNIE as a springboard for
launching the new initiative.
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