
Page 1 of 39

BEAGLE User Notes
(R.S. Forsyth, August 2016)

Contents

1. Why I wrote this software
2. Getting Started
 2.1 Setting Up
 2.2 Data Format
 2.3 System Sketch
 2.4 Program Launch
 2.5 Preparing a Parameter File
3. SEED: Simple Exploratory Example Distributor
4. HERB: Heuristic Evolutionary Rule Breeder
5. LEAF: Likelihood Estimator And Forecaster
6. PLUM: Procedural Language Utility Module
7. LEAFLET: Language Export Application For Likelihood Estimation Trials
8. Concluding Remarks
Acknowledgements
References

Appendix A: Parameter Files
Appendix B: BEAGLE's Rule Language
Appendix C: Case Study, Example Outputs using Aircraft Dataset
 C.1 Preliminaries
 C.2 Running SEED
 C.3 Running HERB
 C.3 Running LEAF
 C.4 Running PLUM
 C.5 Running LEAFLET
Appendix D: Sample Datasets

BEAGLE

Biological Evolutionary Algorithm Generating Logical Expressions

is a rule-finder system inspired by the Darwinian concept of natural selection. A rule-finder is a program
which examines a database of examples and uses machine-learning techniques to create a rule or set of
rules for classifying those examples, as well as other examples of the same type. BEAGLE's method relies on
an analogue of "survival of the fittest" -- the same process that, according to Darwin's theory of evolution,
gave rise to us all. This method involves the slicing and recombination of rules to produce better rules.

In statistical terms, it generates a discriminant function for classifying cases according to their attributes. It
differs from conventional Linear Discriminant Analysis firstly in employing a stochastic procedure to devise
the discriminant functions and secondly in using a highly non-linear, and hence much more expressive,
description language for its classification rules. (A companion system, RUNSTER, which stands for Regression
Using Naturalistic Selection To Evolve Rules, will be released later in 2016, if work goes to plan. This applies
essentially the same logic to what statisticians call regression as BEAGLE does to classification.)

Page 2 of 39

1. Why I Wrote this Software

Broadly speaking, there have been three 'incarnations' of BEAGLE. I devised the first, in 1980, at the
Polytechnic of North London (Forsyth, 1981), out of curiosity -- to find out whether an analogy with
Darwinian evolution, which I termed "naturalistic selection", could be a viable machine-learning method. It
worked surprisingly well, so I wrote the second in Turbo-Pascal under MS/DOS in 1985 (Forsyth & Rada,
1986) as a commercial product sold as PC/BEAGLE. That also worked well as a piece of software but less well
as a money-spinner.

Despite its modest commercial success, PC/BEAGLE represented a milestone in the field. Arguably it was the
first working example of a genetic-programming system, since it incorporated the four distinctive features of
Genetic Programming identified by Kinnear (1994), namely:

1. tree-structured heritable material;
2. variable-length heritable material;
3. syntax-preserving crossover;
4. executable heritable material.

When it was first released as a commercial software package in 1985, it was 15 years ahead of its time.
Hardly anyone then knew what Genetic Programming was, even its author. Now, however, PC/BEAGLE is 16
years behind the times. Since Windows 7, it doesn't even run in the Windows command-line window any
more. (It will run under DOSBox v0.74, but with a couple of niggly quirks that require work-arounds.)

Thus it is high time for a BEAGLE upgrade, taking advantage of modern hardware and some of the lessons
learnt since 1985. Hence the third incarnation -- a comprehensive rewrite of the whole system in a more
flexible programming language, Python3. This is freely available to any interested parties at
http://www.richardsandesforsyth.net/software.html
under the GNU public licence. My goal in this reimplementation has been to keep the good points of 1980s
BEAGLE while correcting some deficiencies and adding some desirable new features.

Good points of 1980s BEAGLE

 It worked! (Fast enough on MS/DOS personal computers to solve practical problems.)

 It exported what it had learned as executable subprograms in C, Fortran or Pascal generated from
example data. (Practical genetic programming.)

 It dealt with numeric targets (tabular regression) as well as logical target expressions (classification).

 It avoided 'bloat' with a prolixity penalty.

 It handled string fields as well as numeric variables.

 It broke beyond the bitstring barrier. (Fortunately I didn't then know of the Schema Theorem or its
apparent support for low-cardinality alphabets.)

 It didn't fall into the fitness-proportional selection trap. (Floating approximate median gave quasi-
rank-based selection without the expense of sorting.)

Enhancements in 21st-century BEAGLE

 A move from generational to incremental search. (Mammals versus mayflies.)

 Ability to handle multi-class classification problems.

 A more intelligible string-handling technique.

 A slightly richer expression language (though not too abstruse).

 A more principled Implementation of the brevity-bias. (Simplify rules after evolution, not during!)

 Correct Bayesian reasoning!

 Rule export in Python or R.

 Zero cost. (People these days have come to expect high-quality software to be free!)

http://www.richardsandesforsyth.net/software.html

Page 3 of 39

2. Getting Started

2.1 Setting Up
First you need Python3. If you don't have it already, the latest version can be downloaded and installed from
the Python website: www.python.org. This is usually quite straightforward. The only snag is if you have
Python2 and want to keep using it. (But isn't it about time to upgrade?) Then you'll probably have to set up a
specific command to run whichever version you use less frequently.

Next step is to unpack the beagling.zip file. After unpacking it (into a top-level folder called "beagling", unless
you want to do lots of editing), you should find the following subfolders.

datasets
op
p3
parapath

The programs are in p3. Sample data sets for testing will be found in subfolder datasets. Subfolder op is the
default location for output files and parapath is a convenient place for storing parameter files, which will be
explained later.

In Windows, it is most convenient to install the system at the top level of the C:\ drive, at least to start with;
otherwise you'll have to edit the sample parameter files to make sure their various file parameters point to
the correct locations. On the Mac you'll probably have to unzip the distribution into a directory such as
/Users/xxxx/beagling/ where "xxxx" is your user name. This will entail some editing of the parameter files
provided. (Hint for Mac users: replacing "C:\" with "/Users/xxxx/" should do the trick.)

2.2 Data Format
The system expects to read its input values from data files such as can be exported from R (R Core Team,
2013) or Excel, with a header line giving column names, using the tab character as a delimiter. Data files can
also be created in a text editor such as Notepad++ (http://notepad-plus-plus.org/), preferably in utf-8
encoding.

The first four and last four lines of the sample data file iris.dat are listed below to illustrate this format.

typename sl sw pl pw
setosa 5.1 3.5 1.4 0.2
setosa 4.9 3 1.4 0.2
setosa 4.7 3.2 1.3 0.2
[....]
virgin 6.3 2.5 5 1.9
virgin 6.5 3 5.2 2
virgin 6.2 3.4 5.4 2.3
virgin 5.9 3 5.1 1.8

This dataset is a well-studied collection of 150 cases known as "Fisher's Iris Data". It was originally collected
by Edgar Anderson who gathered the data to study the morphological variation of Iris flowers of three
related species. Two of the three species were collected in the Gaspé peninsula in Quebec (Anderson, 1935).
The dataset consists of 50 samples from each of three species of Iris (Iris setosa, Iris versicolor and Iris
virginica). Four features are measured from each sample: the length and the width of the sepals and petals,
in centimetres. In the context of classification the point at issue is whether a rule or function can be devised

http://www.python.org/
http://notepad-plus-plus.org/

Page 4 of 39

to classify these example into 3 groups with high enough accuracy using the petal and sepal measurements.

This iris dataset is an example of a rectangular 'flat file' with instances as rows and attributes as columns, a
format used by many machine-learning and statistical packages.

2.3 System Sketch
There are five programs in the BEAGLE suite and a typical run consists of running four or five of them in
sequence.

Step Program Operation

0. [None!] Gathering & "cleansing" suitable example data. The system
provides no software to support this explicitly even though
it is the most crucial, and usually the most time-consuming,
aspect of any machine-learning project! However, sample
data sets are provided on subfolder datasets which allow
you to become familiar with the data format, and how it is
used, before collecting, checking and probably re-
formatting, your own data.

1. seed.py :
Simple Exploratory Example Distributor

This program simply splits a data file into training and test
sets. It takes a tab-delimited input file in rectangular format
and randomly allocates items (rows) from that file to 2
output files. The proportion going into each file is
approximately 0.618034 to 0.381966, respectively, but this
proportion can be reset as a parameter option.

2. herb.py :
Heuristic Evolutionary Rule Breeder

This is the main evolutionary learning program. It takes a
training file of example cases and a target expression that
divides them into categories and repeatedly uses an
evolutionary algorithm to generate a ruleset for classifying
those examples into the appropriate categories. At the end
it picks the best of these rulesets and writes it onto an
output file to be read by the succeeding programs (and the
user).

3. leaf.py :
Likelihood Estimator And Forecaster

This program applies the ruleset written by herb.py to
classify a test file of example cases. Typically that will be the
test data extracted by seed.py, to obtain a relatively
unbiased error-rate estimate, but it may also be a holdout
set of genuinely questionable examples for which a decision
is required.

4. plum.py :
Procedural Language Utility Module

This program takes a rule file as written by herb.py and
translates it into Python3 or R so that it can be used in
external software.

5. leaflet.py :
Language Export Application For
Likelihood Estimation Trials

This program essentially duplicates the function of leaf.py:
it uses the Python3 code written by plum.py to classify a
sample of test cases. Its usefulness is in illustrating how the
generated functions can be incorporated into other Python
programs, and as a check that the results are identical both
when using BEAGLE's internal rule language (as in leaf.py)
and when using the derived Python code. (The generated R
code contains a function named leaflet() that can be used
for the same purpose, but within the R environment.)

Page 5 of 39

2.4 Program Launch
Under Windows, there are three main ways to execute a Python program.

Perhaps the safest, and the mode closest to what is natural in Linux, is to open a command window and run
the program from within that window. In Windows 10 that means right-clicking the bottom-left symbol and
selecting "Command Prompt" from the menu that pops up. That should bring up an MS/DOS-style window,
awaiting a command. At the prompt, you type (to run seed.py, for example) a command such as shown
below, then press Enter.

C:\2016>python c:\beagling\p3\seed.py

This will start the SEED program running. It will ask for a parameter file. In this case, since you're running
from directory C:\2016\ you'll need to give the full path of the parameter file, e.g.

please give parameter file name : c:\beagling\parapath\iris

where the user's input is in bold. An example screen shot using this parameter file, iris.txt, is shown below.

A second method is to navigate with File Explorer to the \beagling\p3\ directory, then select the program
concerned (e.g. seed.py) and right-click on it. A menu should pop up with "Edit with IDLE" as an option near
the top. Select that option and you'll be running IDLE with an active editing window containing the program.
Along the top-line menu will be a "Run" option: click on that and pick "Run Module" to execute the program
within a new window (which, on my desktop at any rate, always needs to be re-sized to fit my screen).
Alternatively, just press Function Key F5. The snag with this method is that you might edit the program by
accident, and, assuming you don't really want to alter it, the chances are that it won't work properly after
that.

Thirdly, the lazy mode: having navigated to the right directory with File Explorer, you can just double-click on
the program name. This will bring up a new command window in which the program runs. You'll then need
to type in the parameter file name, as above, although if that file is located in the \beagling\parapath\
directory, you won't have to give its full path, just its name (with no need to type the extension either as
long as it is ".txt"). A screen shot of running seed.py with the supplied iris parameter file is shown below.

Page 6 of 39

The only snag with this method is that the command window is temporary. The BEAGLE programs, if run in
this manner, do wait with the message

Press Enter to finish

when they are ready to finish, but as soon as you do press Enter (aka Return) the window vanishes. So if you
want to examine the screen output, scroll back to look it over before pressing Enter to dismiss the window.

2.5 Preparing a Parameter File
When you run a program in this suite it will ask for the name of a parameter file. Parameter files are used to
select among BEAGLE's various option settings. Below is a listing of parameter file zoobase.txt which comes
with the distribution in parapath.

comment simple zoological example :

jobname zoobase

maindat c:\beagling\datasets\zoobase.dat

targval type

idfield name

brevity 1

proglang r

This dataset (c:\beagling\datasets\zoobase.dat) refers to a simple example describing 101 animal species in
terms of 18 attributes, mostly binary (0/1 indicating absence/presence). It is zoologically naive, but quite
easy to understand, so it will be used as an initial example to illustrate each of the BEAGLE programs. The
attributes are briefly described below.

Zoobase variables:

name (unscientific) species name

hair whether it has hair

feathers whether it has feathers

eggs whether it lays eggs

milk whether it gives milk to its young

Page 7 of 39

airborne whether it can fly

aquatic whether it lives (at some stage) in water

predator whether it eats meat (i.e. isn't a herbivore)

toothed whether it has teeth

backbone whether it has a spinal chord

breathes whether it breathes air

venomous whether it produces venom

fins whether it has fins

legs number of legs

tail whether it has a tail

domestic whether it has been domesticated

catsize whether it is at least as big as typical domestic cat

type category code:

 1 mammal

 2 bird

 3 reptile

 4 fish

 5 amphibian

 6 insect

 7 other kinds of animal

Note that some parameters apply only to certain programs in the suite. If a parameter isn't relevant to a
given program it will be ignored by that program; thus a single parameter file can be used for a complete run
through the whole suite of programs.

A parameter file is just a plain text file with one item per line. Each line should begin with the parameter
name, then 1 or more blank spaces, then the parameter value. The following table interprets the above
parameter file, line by line. Some parameters have default values that will be used if they are omitted from
the parameter file or given an inapplicable value.

Parameter Default value Function

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

jobname beagle16 This gives the job a name. Any text string can be the value. It isn't
necessary but it is useful as the jobname will be used as a prefix to the
system's output files, so it can be seen that they form a group.

maindat [None] This should be the full file specification of a file where the input data is
stored (in tab-delimited form with a header line naming the columns,
and each row representing a single instance).

targval [None] This parameter is used to define the target categories. It can be a
variable name (as here, "type") or a more complex expression.
Examples later.

idfield [None] This selects an identifying variable for used by herb.py, leaf.py &
leaflet.py in their output listings.

brevity 1 This parameter applies to herb.py. If it is 1, the system uses the size of
each ruleset in assessing its quality (in effect, as a tiebreaker, with
bigger meaning worse); if it is 0, size is not taken into account when
computing a ruleset's quality.

proglang r This parameter applies to plum.py. It selects the programming
language for the export of a ruleset. Valid options are py (Python3) & r.

More information about parameter files can be found in Appendix A.

3. SEED.py : Simple Exploratory Example Distributor

SEED is used to split a dataset into training and test sets, which is a typical first step in using a system such as

Page 8 of 39

BEAGLE. The listing below reproduces the first and last four lines of the input data file zoobase.dat.

name hair feathers eggs milk airborne aquatic predator toothed backbone

 breathes venomous fins legs tail domestic catsize type

aardvark 1 0 0 1 0 0 1 1 1 1 0 0

 4 0 0 1 1

antelope 1 0 0 1 0 0 0 1 1 1 0 0

 4 1 0 1 1

bass 0 0 1 0 0 1 1 1 1 0 0 1 0

 1 0 0 4

[.... 94 lines omitted]

wasp 1 0 1 0 1 0 0 0 0 1 1 0 6

 0 0 0 6

wolf 1 0 0 1 0 0 1 1 1 1 0 0 4

 1 0 1 1

worm 0 0 1 0 0 0 0 0 0 1 0 0 0

 0 0 0 7

wren 0 1 1 0 1 0 0 0 1 1 0 0 2

 1 0 0 2

By running seed.py and using the parameter file shown in the previous section, you should see on-screen
output something like that below. The only user input is "zoobase" supplied in response to the program's
request for a parameter file name. This parameter file is supplied with the BEAGLE distribution. (Extension
.txt is assumed if no extension is given.)

C:\beagling\p3\seed.py Simple Exploratory Example Distributor, v1.2 Thu Aug 4 15:51:55

2016

command-line args. = 1

prepath : C:\beagling\p3

working folder: C:\beagling\p3

script usage: python C:\beagling\p3\seed.py <parafile>

please give parameter file name : zoobase

Paths to search for parameter file :

['C:\\beagling\\parapath', 'C:\\beagling\\p3', '..', '.', 'C:\\Users\\Richard.lounge-

pc\\parapath', 'C:\\Users\\Richard.lounge-pc']

 zoobase

trying to open : C:\beagling\parapath\zoobase.txt

C:\beagling\parapath\zoobase.txt opened for reading.

data to be read from c:\beagling\datasets\zoobase.dat

102 18

data rows = 101

data cols = 18

column names :

['name', 'hair', 'feathers', 'eggs', 'milk', 'airborne', 'aquatic', 'predator', 'toothed',

'backbone', 'breathes', 'venomous', 'fins', 'legs', 'tail', 'domestic', 'catsize', 'type']

data rows processed = 101

62 cases sent to C:\beagling\op\zoobase_dat1.dat

39 cases sent to C:\beagling\op\zoobase_dat2.dat

C:\beagling\p3\seed.py done on Thu Aug 4 15:51:58 2016

after 0.06251 seconds.

From this it will be seen that 62 cases have been put into the training file and 39 into the test file. This is the
default partition ratio: to alter this ratio use the datfrac parameter (explained in Appendix A).

The program has read data in from zoobase.dat on the folder c:\beagling\datasets\zoobase.dat and created
2 new files in the op folder with the jobname as filename and "_dat1.dat" and "_dat2.dat" appended. This is
because the parameter file specified an input source (maindat) but did not give values for parameters
traindat and testdat. (For more details of parameters that can modify the behaviour of seed.py, see
Appendix A.)

4. HERB.py : Heuristic Evolutionary Rule Breeder

Continuing with the zoobase example, using the parameter file shown above, the natural next step is to

Page 9 of 39

create a ruleset with herb.py. In this case we're seeking a rule to classify each animal into one of the seven
classes given by the type variable.

The only user input required at runtime is the parameter file name (here zoobase). The main data input will
be read from whatever file is specified by the traindat parameter. If this is absent, as in the present example,
the program will seek an input file composed of the jobname with "_dat1.dat" appended on the current
output path (c:\beagling\op\ by default). Thus the traindat file which was output from seed.py becomes
input to herb.py.

HERB uses several cycles of repeated subsampling. That is, it applies its evolutionary algorithm several times
(from 5 to 10 times, depending on the dataset size). In each cycle, a small number of training cases (the
square root of the total number of training cases, rounded) are set aside. The evolutionary loop is then
applied to the remainder of the cases to generate a ruleset. This ruleset is then applied to the set-aside cases
and its performance recorded. When all cycles are completed, success/failure statistics are accumulated for
all the set-aside examples. This approach to internal testing, splitting the training set into sub-training and
sub-test sets, is intended to provide error-rate estimates that are not optimistically biased.

Finally, the best rulesets generated in each cycle are reapplied to the entire training set and the highest-
scoring ruleset among these is output to be used by subsequent programs.

During each rule-optimization cycle, the program displays on screen the new highest score every time a new
highest-scoring ruleset is found, and at the end of each cycle it will also show the rule if its score is higher
than the best from previous cycles. This ensure that even during a long run you can see that the program is
working.

4.1 HERB's evolutionary algorithm
The core algorithm within HERB that applies the evolutionary optimization method within each subsampling
cycle is outlined in the following pseudocode. The overall number of cycles, K, will be between 5 and 10
depending on size of dataset.

[Parameters:
C counter to record number of fresh rulesets created;
P number of rulesets in the population, popsize;
R number of individual tree-structured rule expressions per ruleset;
T maximum number of fresh rulesets to be created in current cycle. T will be maximum number of

fresh rulesets allowed overall (default 131072) divided by K.]

1. Create an initial population of P rulesets, each containing R rule-expressions. Set C to P.
2. Examine M (4 by default) population members selected at random and call the highest-scoring item

p1.
3. Examine M (4 by default) population members selected at random and call the lowest-scoring item

p0.
4. Pick a member of the population at random and call it p2.
5. Mate p1 with p2 (i.e. apply 'crossover' operator) and replace p0 with the resulting 'offspring'.
6. Increment C.
7. With probability m1 (default 0.5) apply mutation to the newly made p0, i.e. make a small random

change.
8. Evaluate the new ruleset p0 and show score if best so far.
9. With probability m2 (default 0.25) pick a population item randomly and apply mutation to it.

Evaluate it and show score if best so far; also increment C.
10. If C exceeds T, exit cycle; otherwise continue from step 2.

Page 10 of 39

The crossover routine, when applied to a tree-structured rule-expression, just consists of taking a random
subtree from one parental expression (which could be the whole tree), doing the same to the other tree, and
joining them with a connective randomly taken from either tree (or picked at random if that would violate
the syntax rules). For example, mating

 (wingspan > (fuselage * 2.47891))

with

 ((engines = cannons) & (maxrange > (ceiling * 0.8098014))

could produce

 ((fuselage * 2.47891) > (ceiling * 0.8098014))

among many other possible 'offspring'. (BEAGLE's rule language is described in Appendix B.)

The two main output files of herb.py are a rule file, which will be named as the jobname with "_rule.txt"
appended unless otherwise specified, and a listing file (likewise with "_list.txt" appended).

4.2 Example ruleset derived from zoobase data
A complete rule file (zoobase_rule.txt) derived from the zoobase_dat1.dat data follows.

training data : C:\beagling\op\zoobase_dat1.dat

creation date : Thu Aug 4 15:54:20 2016

rule mode : tabular

62 18

type

['1', '2', '3', '4', '5', '6', '7']

[0.27092212241224867, 0.1879897902429265, 0.104277973536091, 0.13794679259913573,

0.0903073741374162, 0.104277973536091, 0.104277973536091]

$

(tail > milk)

((2 ; toothed) - (feathers < backbone))

(breathes ; milk)

$

000 [27, 0, 0, 0, 0, 0, 0]

001 [0, 0, 0, 0, 2, 0, 0]

010 [0, 0, 0, 0, 0, 0, 3]

011 [0, 0, 0, 0, 0, 4, 1]

100 [0, 0, 0, 7, 0, 0, 0]

101 [0, 0, 4, 0, 1, 0, 0]

110 []

111 [0, 13, 0, 0, 0, 0, 0]

[0.9428571428571428, -4.333333333333333]

$

This can be subdivided into 3 sections, each ended by a dollar sign on a line of its own.

First come seven lines (one split over 2 lines by the formatting of this document) giving information about
the training data. Next come the rules themselves, three in this case. Thirdly comes a "signature table"
(Samuel, 1967) which indicates how many training example of each type are found for each of the 8 possible
combinations of True(1)/False(0) values of the three rules. The extra line at the end of the signature table is
the quality or fitness score of this rule. This consist of 2 numbers, because brevity was set to 1 in the
parameter file: the number starting with 0.9428 is Goodman & Kruskal's lambda, a measure between 0 and 1
of how well two categorical variables associate in a contingency table (Upton & Cook, 2006); the number

Page 11 of 39

starting -4.3333 is the average length of the rules, negated because the algorithm maximizes but shorter
rules are preferred.

In the first section, lines 1 and 2 should be self-explanatory. The third line indicates that the rule mode used
was tabular, i.e. that rules in the ruleset are combined by the signature table (see below). The alternative
rule mode is "demonic", named in honour of Selfridge's "Pandemonium" (Selfridge, 1959). In demonic mode
there is a rule for each category in the training data and the class to be assigned is decided by evaluating
each rule and picking the one with the highest value. The forth line shows that the training data consisted of
62 rows each with 18 columns. The next 2 lines give the target expression, here just a variable name, and the
category labels. The final line before the dollar sign, gives the 'prior probabilities' to be assumed for each
category: these are used in the Bayesian reasoning when the rule is applied to a particular data instance.

The next section gives the three rules of this ruleset. BEAGLE's rule language is explained in Appendix B. As
illustration here, we consider the third rule

 (breathes ; milk)

which uses one of BEAGLE's less obvious operators, the semi-colon ";", which stands for Exclusive-Or. The
variable breathes will be 1 or 0, depending on whether the animal breathes air or not; milk will be 1 or 0
depending on whether the animal species is one that gives milk to its offspring or not. Thus this rule will be
true for air-breathing animals that don't give milk as well as milk-giving animals that don't breathe air (if any
exist, perhaps waiting to be discovered by science near some geothermal vent in the deep ocean), false for
all others.

The third section is the signature table itself, followed by the quality score on the last line before the final
dollar. Here the first line

000 [27, 0, 0, 0, 0, 0, 0]

shows that when all rules were false (000) there were 27 examples of class '1' (mammal) and no examples of
any other class. Similarly, the line

101 [0, 0, 4, 0, 1, 0, 0]

shows the class distribution when the first and third rules were true and the second rule false (101). There
were five such cases in the training data, of which four belonged to class '3' (reptile) and one to class '5'
(amphibian). Finally,

111 [0, 13, 0, 0, 0, 0, 0]

shows that all 13 cases when all rules were true were of class '2' (birds).

When applied to classifying a fresh instance, the rules will be evaluated to determine which row of the
signature table is selected, and the frequencies in that row will modulate the prior probabilities to determine
the posterior probabilities to be assigned to each category.

4.3 Listing file derived from zoobase data
HERB also produces a listing file (normally named with the jobname with "_list.txt" appended) that
summarizes how well the system performed during the resampling cycles. The resampling process, which
ensures in each cycle that rules are tested on (held-out) cases that were not used to measure the fitness
scores of rulesets generated during the evolutionary optimization procedure, is designed to ensure that
these summary statistics aren't optimistically biased.

Page 12 of 39

An extract from the listing file produced by herb.py from the run on the zoobase data that produced the rule
described above follows.

dateline Thu Aug 4 15:52:09 2016

progname C:\beagling\p3\herb.py

id C:\beagling\parapath\zoobase.txt

traindat C:\beagling\op\zoobase_dat1.dat

targval type

====subsampling trial :

rank strength case name pred:true cellsize predvals

 1 0.97 33 opossum 1 + 1 23 0.97 0.01 0.00 0.00 0.00 0.00 0.00

 2 0.97 30 mole 1 + 1 23 0.97 0.01 0.00 0.00 0.00 0.00 0.00

 3 0.97 18 gorilla 1 + 1 23 0.97 0.01 0.00 0.00 0.00 0.00 0.00

 4 0.97 58 wallaby 1 + 1 22 0.97 0.01 0.00 0.01 0.00 0.00 0.00

 5 0.97 43 reindeer 1 + 1 22 0.97 0.01 0.00 0.01 0.00 0.00 0.00

 6 0.97 29 mink 1 + 1 22 0.97 0.01 0.00 0.01 0.00 0.00 0.00

 7 0.97 22 hare 1 + 1 22 0.97 0.01 0.00 0.01 0.00 0.00 0.00

[.... items 8 to 57 deleted to save space]

 58 0.44 46 seawasp 7 + 7 2 0.14 0.10 0.05 0.07 0.05 0.05 0.53

 59 0.42 59 wasp 6 + 6 4 0.10 0.07 0.20 0.05 0.03 0.52 0.04

 60 0.42 27 lobster 6 - 7 4 0.10 0.07 0.20 0.05 0.03 0.52 0.04

 61 0.42 16 gnat 6 + 6 4 0.10 0.07 0.04 0.05 0.03 0.52 0.20

 62 0.42 7 crab 6 - 7 4 0.10 0.07 0.20 0.05 0.03 0.52 0.04

 63 0.22 52 toad 5 + 5 1 0.19 0.14 0.07 0.10 0.35 0.07 0.07

 64 0.22 14 treefrog 5 + 5 1 0.19 0.14 0.07 0.10 0.35 0.07 0.07

+++++++++++++++++++++++++++++++++++-++++++++++--+++---++-++-+-++

Confusion matrix :

Truecat = 1 2 3 4 5 6 7

Predcat : 1 27 0 0 0 0 0 0

Predcat : 2 1 14 0 0 0 0 0

Predcat : 3 0 0 0 0 1 0 0

Predcat : 4 0 0 2 7 0 0 0

Predcat : 5 0 0 1 0 2 0 0

Predcat : 6 0 0 1 0 0 4 3

Predcat : 7 0 0 0 0 0 0 1

Kappa value = 0.8085

Precision (%) by category :

1 100.0

2 93.3333

3 0.0

4 77.7778

5 66.6667

6 50.0

7 100.0

Recall (%) by category :

1 96.4286

2 100.0

3 0.0

4 100.0

5 66.6667

6 100.0

7 25.0

cases = 64

cases with unseen category labels = 0

hits = 55

percent hits = 85.94

Hedges's g (z-gap) between strengths of right & wrong answers = 1.3048

Resultant rule from all training cases :

[rule listing removed to save space (rule shown in previous section)]

The first five lines of this listing just display some of the more important parameter settings, for reference.
Then, after "==== subsampling trial :", details of the 64 decisions in the subsampling trial follow. Fifty of

Page 13 of 39

these have been removed from this extract to save space, leaving only the first and last 7 cases.

All the first seven assignments are correct (mammals). Among the last seven there are two mistakes, a
lobster and a crab classified as type '6' (insect) when they should have been type '7' (miscellaneous).

Taking the item at rank 60 as illustration,

 60 0.42 27 lobster 6 - 7 4 0.10 0.07 0.20 0.05 0.03 0.52 0.04

this line can be used to explicate the values in the various columns. The number 60 is the rank, out of 64,
ordered by the number in the second column, headed "strength". This is 0.42 and gives a measure of
certainty about the decision. It is computed by comparing the highest of the class posterior probabilities
with the remaining posterior probabilities. The next two items ("27 lobster") identify the instance itself: 27
is its position within the training file and "lobster" is the value of the chosen idfield (name). The next three
symbols ("6 - 7") show the predicted category, 6, the success status, '-', and the true category, 7. For correct
decisions, the success status is '+'. Then comes the number 4, in a column labelled "cellsize". This gives the
number of examples in the signature-table row on which the decision was based. In general, smaller
numbers are associated with less statistical reliability, hence more doubtful decisions. Then come the 7
posterior probabilities, rounded to 2 places of decimals. In this row the largest probability is 0.52 (applying
to insects) and the next largest 0.20 (applying to reptiles): the true category (miscellaneous, at position 7)
only gets a posterior probability of 0.04. So this was a clear mistake.

However, there were only nine mistakes in these 64 decisions, so the overall performance wasn't bad. The
line just after the last item

+++++++++++++++++++++++++++++++++++-++++++++++--+++---++-++-+-++

shows the error-status of each of these 64 decisions, ordered left to right as they are ranked, i.e. from most
to least confident (according to the "strength" column). It is relatively reassuring that the first 35 decisions
are all correct, and all but one of the mistakes are found in the last 18. To summarize: the system is telling us
that it knows pretty well how to identify mammals and birds, but isn't so sure about other types.

This conclusion is reinforced by looking at the "confusion matrix" which shows how the predicted and true
categories were associated. The Kappa value derived from this is a measure of statistical association, Cohen's
Kappa (Upton & Cook, 2006). The Precision and Recall of each category is also given. From this it can be
inferred that the ruleset is particularly poor on reptiles, of which only four were present in the training data:
41 of the 55 correct decisions were birds or mammals. The overall success rate was nearly 86%.

The values given as Hedges's g, represents how many standard deviations apart the means of the correct
and incorrect "strength" values were. It is a z-score intended to give an indication of the reliability of the
strength ranking. Interpretation in terms of signal detection theory is possible, though tricky. As a rule of
thumb, anything above 1 is satisfactory.

5. LEAF.py : Likelihood Estimator And Forecaster

The normal next step after running SEED and HERB is to run LEAF on the data held out as a test sample. The
following is an extract from LEAF's main listing (suffixed "_test.txt") on the test data file zoobase_dat2.dat.
The output is in the same format as the listing from herb.py (suffixed "_list.txt") and can be interpreted in
essentially the same way. Only the first 7 and last 10 individual decisions (out of 39) are shown below, to
save space.

dateline Thu Aug 4 15:55:01 2016

progname C:\beagling\p3\leaf.py

Page 14 of 39

id C:\beagling\parapath\zoobase.txt

testdat C:\beagling\op\zoobase_dat2.dat

targval type

====holdout trial :

rank strength case name pred:true cellsize predvals

 1 0.97 37 vole 1 + 1 27 0.98 0.01 0.00 0.00 0.00 0.00 0.00

 2 0.97 33 squirrel 1 + 1 27 0.98 0.01 0.00 0.00 0.00 0.00 0.00

 3 0.97 26 raccoon 1 + 1 27 0.98 0.01 0.00 0.00 0.00 0.00 0.00

 4 0.97 25 puma 1 + 1 27 0.98 0.01 0.00 0.00 0.00 0.00 0.00

 5 0.97 24 porpoise 1 + 1 27 0.98 0.01 0.00 0.00 0.00 0.00 0.00

 6 0.97 23 pony 1 + 1 27 0.98 0.01 0.00 0.00 0.00 0.00 0.00

 7 0.97 22 polecat 1 + 1 27 0.98 0.01 0.00 0.00 0.00 0.00 0.00

[.... items 8 to 29 omitted, to save space]

 30 0.55 34 starfish 7 + 7 3 0.12 0.08 0.04 0.06 0.04 0.04 0.62

 31 0.55 20 octopus 7 + 7 3 0.12 0.08 0.04 0.06 0.04 0.04 0.62

 32 0.55 7 crayfish 7 + 7 3 0.12 0.08 0.04 0.06 0.04 0.04 0.62

 33 0.55 6 clam 7 + 7 3 0.12 0.08 0.04 0.06 0.04 0.04 0.62

 34 0.50 38 worm 6 - 7 5 0.08 0.06 0.03 0.04 0.03 0.59 0.17

 35 0.50 36 termite 6 + 6 5 0.08 0.06 0.03 0.04 0.03 0.59 0.17

 36 0.50 19 moth 6 + 6 5 0.08 0.06 0.03 0.04 0.03 0.59 0.17

 37 0.50 16 housefly 6 + 6 5 0.08 0.06 0.03 0.04 0.03 0.59 0.17

 38 0.50 10 flea 6 + 6 5 0.08 0.06 0.03 0.04 0.03 0.59 0.17

 39 0.39 11 frog 5 + 5 2 0.15 0.11 0.06 0.08 0.49 0.06 0.06

++++++++++++++++-++++++-+++++++++-+++++

Confusion matrix :

Truecat = 1 2 3 4 5 6 7

Predcat : 1 14 0 0 0 0 0 0

Predcat : 2 0 7 0 0 0 0 1

Predcat : 4 0 0 1 6 0 0 0

Predcat : 5 0 0 0 0 1 0 0

Predcat : 6 0 0 0 0 0 4 1

Predcat : 7 0 0 0 0 0 0 4

Kappa value = 0.9008

Precision (%) by category :

1 100.0

2 87.5

4 85.7143

5 100.0

6 80.0

7 100.0

Recall (%) by category :

1 100.0

2 100.0

3 0.0

4 100.0

5 100.0

6 100.0

7 66.6667

cases = 39

cases with unseen category labels = 0

hits = 36

percent hits = 92.31

Hedges's g (z-gap) between strengths of right & wrong answers = 0.4049

Here percentage success (92.31) is actually higher than estimated in the herb.py listing (85.94) though the
reliability of the strength ranking is less.

6. PLUM.py : Procedural Language Utility Module

It is all very well to have a system learn a rule or ruleset, but it takes a lot of work: planning, data collection &
collation, data checking, experimentation and so on. If you're lucky, and you have chosen your training data
wisely, the reward for all that work is a ruleset that will reliably classify fresh examples of the same sort of
data.

Page 15 of 39

It is unlikely that you'll be satisfied with rules in BEAGLE's idiosyncratic rule-language as a final outcome,
even if they appear to be highly accurate. For that reason, the plum.py module is provided, to translate from
BEAGLE's internal expression language either into Python3 or R, the latter being the language of choice
among people nowadays known as "data scientists".

PLUM works by taking in a rule file produced by HERB and combining it with one of 2 template files,
template.py or template.r, provided with the distribution, which should reside in the same directory as
plum.py (normally c:\beagling\p3\). These templates are program skeletons which PLUM fills in by
translating the information in HERB's rule file into a suitable format for the programming language
concerned.

A complete listing of the R source code file (zoobase_rule.r) produced by PLUM from the file
zoobase_rule.txt follows.

Using BEAGLE R template, version of 28/07/2016 :

rule written by plum.py ;

derived from training data : C:\beagling\op\zoobase_dat1.dat;

generated on creation date : Thu Aug 4 15:54:20 2016;

dumped on Thu Aug 4 15:59:04 2016.

beag_gold = 5.0 ** 0.5 * 0.5 + 0.5 ## global

helper functions :

beag_exor = function (v1,v2) {

 ## exclusive or, as in Beagle :

 return ((v1>0) != (v2>0))

 }

beag_root = function (v) {

 ## safe square root :

 if (v >= 0.0) return (sqrt(v))

 else return (-sqrt(abs(v)))

 }

beag_slog = function (v) {

 ## safe natural logarithm :

 if (v < 0) return (-log(1+abs(v)))

 else return (log(1+v))

 }

beag_stabprep = function () {

 ## sets up fallout table :

 stab = list()

 stab[['000']] = c(27, 0, 0, 0, 0, 0, 0)

 stab[['001']] = c(0, 0, 0, 0, 2, 0, 0)

 stab[['010']] = c(0, 0, 0, 0, 0, 0, 3)

 stab[['011']] = c(0, 0, 0, 0, 0, 4, 1)

 stab[['100']] = c(0, 0, 0, 7, 0, 0, 0)

 stab[['101']] = c(0, 0, 4, 0, 1, 0, 0)

 stab[['110']] = c(0, 0, 0, 0, 0, 0, 0)

 stab[['111']] = c(0, 13, 0, 0, 0, 0, 0)

 ## unpacks stab lines.

 return (stab)

 } ## stabprep ends.

beag_decrule = function (vals,stab) {

 ## input vals should be a 1-row dataframe with appropriate colnames.

 ## target : type

 ## rule mode is tabular.

Page 16 of 39

 rule = c() ; bins = c('0','1')

 catlist = c('1', '2', '3', '4', '5', '6', '7')

 priorvec = c(0.27092212241224867, 0.1879897902429265, 0.104277973536091,

0.13794679259913573, 0.0903073741374162, 0.104277973536091, 0.104277973536091)

 subrules = 3

 ## compute rule values :

 rule[1] = (vals$tail > vals$milk)

 rule[2] = (beag_exor(2,vals$toothed) - (vals$feathers < vals$backbone))

 rule[3] = beag_exor(vals$breathes,vals$milk)

 p = 0 ; b = c()

 while (p < subrules) {

 p = p + 1 ## early-r, late-py

 v = (rule[p]>0) ## omit if demonic

 b = c(b,bins[v+1]) ## boolean string, omit if demonic

 }

 b = paste(b,collapse='') ## omit if demonic

 ## retrieve cell frequencies :

 frex = stab[[b]]

 cellsize = sum(frex)

 ## attenuate frex :

 cats = length(priorvec)

 slug = beag_gold / cats

 modfrex = slug + frex

 ## defer to Reverend Bayes :

 postvec = priorvec * modfrex

 postvec = postvec / sum(postvec)

 pc = which.max(postvec)

 predcat = catlist[pc]

 return (list(cellcode=b,predcat=predcat,frex=frex,postvec=postvec))

 }

decision rule ends.

leaflet = function (datframe) {

 ## Language-Export Application For Likelihood Estimation Trials.

 stab = beag_stabprep()

 rows = dim(datframe)[1]

 if (rows < 1) return (NULL)

 options(stringsAsFactors=FALSE)

 ## prepare extra cols :

 predcat = character(rows) ; stabcode = character(rows)

 cellsize = numeric(rows)

 strength = numeric(rows)

 topprob = numeric(rows) ; nextprob = numeric(rows)

 for (r in 1:rows) {

 beagvals = beag_decrule(datframe[r,],stab)

 if (r == 1) cats = length(beagvals$frex)

 ## what if cats < 2 (?!)

 ## also test if predvals[[2]] is character ?

 stabcode[r] = beagvals$cellcode

 predcat[r] = as.character(beagvals$predcat) ## might be numeric

 cellsize[r] = sum(beagvals$frex)

 post = sort(beagvals$postvec,decreasing=TRUE)

 topprob[r] = post[1] ; nextprob[r] = post[2]

 ## nextprob's category tricky to obtain; worth doing ?

 pd = post[1] - post[2] ## winning margin

 if (cats <= 2) strength[r] = pd

 else {

 ps = c(nextprob[r],post[2:cats]) ## duplicate second-highest prob

 strength[r] = topprob[r] - sum(ps) / cats ## compare top with

augmented remainder

 }

 }

 outframe = data.frame(strength,predcat,topprob,nextprob,stabcode,cellsize)

Page 17 of 39

 temp = cbind(datframe,outframe)

 options(stringsAsFactors=default.stringsAsFactors())

 return (temp)

 } ## returns data frame with additional columns.

ending.

This module begins with a definition of some helper functions for implementing the 'safe' natural logarithm
and square root operators with the same semantics as in BEAGLE, and ensuring that BEAGLE's version of
Exclusive Or is implemented as expected in respect of conversions between True/False and numeric values.

Then comes beag_stabprep() which sets up the signature table with the data-derived frequency counts to be
used in the Bayesian reasoning.

Next follows the R function beag_decrule(,) that makes decisions about individual instances; while the
function leaflet() (Language-Export Application For Likelihood Estimation Trials) uses that function to take an
input data frame and produce an output data frame in which each row has additional columns indicating its
computed category membership and the probability assigned to that classification, as well as stabcode,
indicating the row in the signature table used and cellsize, the number of training instances that fell into that
row.

Because you have the source code, you can examine the code at leisure to understand its workings, and of
course you can export it and apply it to fresh data within the R environment. (For Pythoneers, an example of
Python3 output from plum.py is shown in Appendix C.)

With BEAGLE, you have data-driven automatic programming at your fingertips!

7. LEAFLET.py : Language Export Application For Likelihood Estimation Testing

LEAFLET.py is only applicable if you select Python as your output language (with py as the value of parameter
proglang). If you choose R, the function leaflet() applies the learned ruleset to a dataframe of examples --
probably the most natural way of using the results of BEAGLE's machine-learning for an R user. If you choose
Python3, this program lets you perform essentially the same function, applying the rules to a data file rather
than an R dataframe.

It works by loading and compiling the "_rule.py" output. It should give exactly the same output as running
leaf.py on the same data, thus it functions as a check. More important, it allows a Python programmer to
inspect the Python3 code of a valid method of incorporating a BEAGLE ruleset into Python, and thus provides
a pointer towards doing likewise with his or her programs.

8. Concluding Remarks

Splitting a data file into training and test sets, perhaps several times, as done by seed.py, is standard practice
in machine-learning projects during the exploratory phase. However, towards the end of such a project,
once you have confidence that the system is able to produce reliable rules, it is advisable to use the entire
dataset, not just a random sample, to generate rules for final export. A ruleset based on a larger training
sample is likely to be more accurate than one based on a random subset. Therefore a final run using SEED
with a datfrac of 1.0 before using HERB and PLUM to export the learned ruleset for application "in the field"
is also standard practice. (Following this advice may not be practicable with huge data sets because a HERB
run may take too long, but it is valid in principle.)

It is also fair to point out that, like most machine-learning systems, BEAGLE has an Achilles Heel. This is the
"none-of-the-above" problem, which afflicts all classifiers, including humans, though computational

Page 18 of 39

classifiers are particularly vulnerable in this respect.

In fact, this is a variation on the theme of "outliers" -- a concept that still exercises the finest statistical
thinkers. When a trained rule, ruleset or function is applied to instances from completely outside its training
sample, i.e. outside what logicians refer to as the "universe of discourse", it will still give an answer. For
instance, if you throw information about daffodils or orchids at a ruleset trained to distinguish the three
types of iris flower in the iris.dat file, it will classify them as setosa or versicolor or virginica. It will pick the
most likely of those three classes, but in this case the most likely is still impossible.

The "strength" index in LEAF and LEAFLET is an attempt to give a clue when this might be happening, but my
initial experiments suggest that it is rather a weak heuristic. Like most practical software using Bayesian
reasoning, BEAGLE, in effect, assigns zero prior probability to never-seen categories. There isn't a general
rule for assigning prior probability to a dustbin category such as "none of the above".

A completely rigorous general solution to this problem is unattainable. There can be no context-free
definition of what constitutes an outlier. However, I am working on alternative heuristics designed to do
better with typical real-life data sets than BEAGLE's present "strength" measure. With average-to-good luck,
I hope to incorporate such a technique into RUNSTER and release it before the end of 2016; and then retrofit
the same technique into BEAGLE.

Another limitation that should be mentioned is that BEAGLE in its present form is not suited to the kind of
huge data sets that go by the name "big data", with tens of millions of instances measured on thousands of
variables. Although Python3 is fast as interpreters go, analyzing such enormous data sets in BEAGLE on a
desktop computer would take an unrealistic amount of time. BEAGLE is more at home with data sets of less
than 100,000 data points (number of rows multiplied by number of columns). If you do have a very large
dataset, and want to apply BEAGLE to it, using SEED with a small value of datafrac for the training subset is
probably the best practical approach. At least that way you'll get some rules to try on the (presumably much
larger) test sample.

Even after 36 years, BEAGLE is a work in progress. Feedback from users with error reports or suggestions for
enhancements will be appreciated. I anticipate that this will not be the last version ever released, and hope
to have time to improve the system in various ways over the coming months and years.

Meanwhile happy BEAGLING! May the Muses of Induction smile on your efforts....

Acknowledgements

Thanks to Phoenix Lam for teaching me about the Windows snipping tool, among other things; to James
McDermott for encouraging me to re-visit the world of evolutionary computing; to Dean McKenzie for asking
me from time to time when BEAGLE would be runnable again; to the UCI dataset repository for several
example datasets.

Thanks also to you for reading this far. (:-)

Page 19 of 39

References

Afifi, A.A. & Azen, S.P. (1979). Statistical Analysis: a Computer Oriented Approach, second edition. New York:

Academic Press.
Anderson, E. (1935). "The irises of the Gaspé Peninsula". Bulletin of the American Iris Society 59, 2–5.
 http://en.wikipedia.org/wiki/Iris_flower_data_set
Andrews, D.F. & Herzberg, A.M. (1985). Data: a Collection of Problems from many Fields for the Student and

Research Worker. New York: Springer.
Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and Regression Trees. Monterey,

California: Wadsworth.
Ethell, J.L. (1999). World War II Aircraft. Glasgow: HarperCollins.
Evett, I.W. & Spiehler, E.J. (1988). Rule induction in forensic science. In: Duffin, P.H. Knowledge Based

Systems in Administration, 152-160. New York: Halsted Press.
 https://archive.ics.uci.edu/ml/datasets/Glass+Identification
Flury, B. & Riedwyl, H. (1988). Multivariate Statistics: a Practical Approach. London: Chapman & Hall.
Forsyth, R.S. (1981). BEAGLE -- a Darwinian approach to pattern recognition. Kybernetes, 10, 159-166.
 http://www.richardsandesforsyth.net/pubs/beagle81.pdf
Forsyth, R.S. & Rada, R. (1986). Machine Learning: Applications in Expert Systems and Information Retrieval.

Chichester: Ellis Horwood.
Gorman, R. P., and Sejnowski, T. J. (1988). Analysis of hidden units in a layered network trained to classify

sonar targets. Neural Networks, 1, 75-89.
Kinnear, K.E. (1994) ed. Advances in Genetic Programming. MIT Press. (Volume 1.)
Manly, B.F.J. (1994). Multivariate Statistical Methods: a Primer. London: Chapman & Hall.
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for statistical

Computing, Vienna, Austria.
 http://www.R-project.org/.
Samuel, A. (1967). Some studies of machine learning using the game of checkers. IBM Journal of Research &

Development, 11(6), 601-617.
Selfridge, O.G. (1959). Pandemonium: a paradigm for learning. Proceedings of Symposium held at The

National Physical Laboratory, November 1958, 513-526, London: HMSO.
Upton, G. & Cook, I. (2006). Oxford Dictionary of Statistics, second ed. Oxford: Oxford Univ. Press.

http://en.wikipedia.org/wiki/Iris_flower_data_set
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
http://www.richardsandesforsyth.net/pubs/beagle81.pdf
http://www.r-project.org/

Page 20 of 39

Appendix A : Parameter Files

The table below gives information about BEAGLE parameters with which users can choose various option
settings. The letters under each parameter name indicate which programs in the suite take notice of the
parameter (SHLP for seed.py, herb.py, leaf.py & plum.py). For example, SH-- would mean that SEED & HERB
take note of the parameter but the other programs ignore it.

Parameter files are plain text files, such as created by text-editors like Notepad or Notepad++, with each line
setting a single parameter value. The parameter name comes first at the front of the line, followed by
whitespace, followed by the parameter value. The order shown here is alphabetical, but ordering in a
parameter file doesn't matter. Since programs only read values for the parameters that affect them, you
should be able to make a single parameter file to control a complete run-through of the BEAGLE suite.

Parameter Default value Function

brevity
-H--

1 If brevity is set to 1, the average size of a ruleset will be used as the
second element in its fitness score (negated, since HERB maximizes)
and thus function as a tie-breaker, with shorter rules favoured. If it
is zero, the size of a ruleset will not affect its quality score.

comment

[None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

datfrac
S---

0.61803398875 This specifies the fraction of the cases (rounded to the nearest
whole number) in the full dataset (see maindat) that will be copied
into the training datafile (see traindat) by SEED. The remaining
cases will go into the test datafile (see testdat). Allocation of
individual cases to each file is (pseudo-)random (see randseed).

dumpfile
-HL-

[None]
=> jobname with
"_dump.txt"
appended

HERB & LEAF dump versions of their decisions on each case in form
that can be read back into Python or, less easily, R in this file. It is
mainly intended to assist the programmer in checking the software,
but you're welcome to look at it.

idfield
-HL-

[None] HERB & LEAF use this variable name to identify each row in their
output listings (see listfile). If none is given, the input row number is
used as an identifier.

jobname
SHLP

beagle16 This gives the job a name. Any text string can be the value. It isn't
necessary but it is recommended, as the jobname will be used as a
prefix to the program's output files, so it can be seen that they form
a group.

listfile
-HLP

[None] This is a file specification for the main, human-readable, output
listing of HERB, LEAF or PLUM. It is simplest not to specify a file, in
which case the listing file will be named from the jobname (see
above) with "_list.txt", "_test.txt" or "_plum.txt" appended,
respectively, and placed in the outpath folder (see below).

m1
-H--

0.5 This number (from 0 to 1) specifies the probability that after a
mating/crossover operation in HERB a mutation will be performed
on the resultant offspring.

m2
-H--

0.25 This number (from 0 to 1) specifies the probability, in HERB, that a
mutation will be performed on an existing item in the population of
rulesets during each pass round the main evolutionary loop. In
effect, it specifies the proportion of new rulesets to be generated
by 'asexual' reproduction.

maindat [None] This should be the full file specification of a file where the input

Page 21 of 39

S--- data is stored (in tab-delimited form with a header line naming the
columns, and each row describing a single instance).

ntrials
-H--

131072 The total number of new structures to be generated during all
HERB's evolutionary trials. Minimum 256, maximum 1048576.

outpath
SHLP

..\op\ This specifies the folder (directory) where the program will place its
output. Default is the \op\ subfolder of the parent of the folder in
which the program resides.

popsize
-H--

233 This specifies the number of quasi-organisms (rulesets) in the
population being optimized by HERB. Minimum 8, maximum 2048.

randseed
SH--

0 This number is used to initialize Python's pseudo-random number
generator in SEED and HERB -- except that if it is 0 or 1 or negative
the generator will be seeded from the system clock, i.e.
haphazardly, so each run will usually produce slightly different
results. To have deterministic results, pick a number from 2 to
999999999, preferably a prime.

progfile
---P

[None] This specifies the file on which the export version of the input
ruleset (see rulefile) will be written. If none is given and r is the
programming language (see proglang) it will be jobname (see
above) with "_prog.r" appended; if none is given and py is the
programming language it will jobname with "_prog.py" appended.

proglang
---P

r This chooses the programming language for export of a BEAGLE
ruleset: r selects the R language; py is for Python3.

rulefile
-HLP

[None]
=> jobname with
"_rule.txt"
appended

This specifies the file into which HERB will write its highest-scoring
ruleset at the end of its optimization process, and from which LEAF
and PLUM will read the ruleset to be used.

rulemode
-H--

tabular When rulemode is tabular, the truth status of the rules in a ruleset
(e.g. 110, meaning True,True,False) is used as index into a signature
table to accumulate frequencies in HERB and to use frequencies in
HERB, LEAF, PLUM and LEAFLET. The only recognized alternative
mode is demonic, in which case there will be as many rules as
categories with a frequency line for each and the decision for each
instance will be based on the rule that gives the highest numerical
value.

skipvars
-H--

[None] The value for skipvars should be a list of column/variable names
separated by commas, e.g.
skipvars bombing,country
which will tell HERB not to use these variables in any rules
generated. There is no need to forbid variables used in the target
expression (see targval) as they will be automatically excluded from
the generation process.

targval
-HLP

[None] This parameter is used to define the target categories. It can be a
variable name (e.g. "type") or a more complex expression. An
example can be seen in Appendix C.

testdat
S-L-

[None]
=> jobname with
"_dat1.dat"
appended

This specifies a file into which SEED will write a test subset of the
full data (see maindat) and which LEAF & LEAFLET will use by
default for input.

traindat
SH-P

[None]
=> jobname with
"_dat2.dat"

This specifies a file into which SEED will write a training subset of
the full data (see maindat) and which HERB & PLUM will use by
default for input.

Page 22 of 39

trigfunx
-H--

0 BEAGLE's rule language includes two trigonometric functions $Cosi
and $Sine, but in the context of machine learning these can be
rather dangerous. This parameter defaults to zero, which means
that they won't be used in the evolutionary rule-generation
process. Only set it to 1 if you're sure that you have (usually
temporal) data where taking sines or cosines makes sense. Note
that you can use trigonometric functions in target expressions (see
targval) even when this parameter is zero: they are only excluded
from the rule-generation loop.

LEAFLET uses the same parameters as LEAF except that it reads from progfile (written by PLUM) instead of
rulefile (written by HERB).

Page 23 of 39

Appendix B: BEAGLE's rule language

BEAGLE's rule language is modelled on that found in mainstream procedural programming languages, such
as C, Fortran, Pascal and Python. It allows the user, or the computer, to frame logical and mathematical
expressions. There are 20 recognized operators, as follows.

MONADIC (all of which are written with a dollar sign '$' as prefix)
 $! Logical negation (NOT)
 $~ Arithmetic negation (unary minus)
 $Fabs Floating-point absolute value (ignoring sign)
 $Root 'Safe' square root:
 $Root x is sqrt(abs(x)); result negated if x is less than zero
 $Slog 'Safe' natural logarithm:
 $Slog x is -ln(1+abs(x)) if x is negative, otherwise ln(1+x)
 $Tanh Hyperbolic tangent (a 'squashing' function mapping to the range -1 to +1)
 $Cosi Cosine
 $Sine Sine

[Note: if parameter trigfunx is 0 (the default value) $Cosi & $Sine will be disabled during HERB's
evolutionary cycle, though they can still be used in a target expression (see Appendix A). To enable
these two trigonometric functions during rule generation, set parameter trigfunx to 1.]

ARITHMETIC
 + Addition
 - Subtraction
 * Multiplication
 ^ Maximum
 \ Minimum

BOOLEAN
 & Logical conjunction (AND)
 | Logical disjunction (inclusive OR)
 ; Logical exclusive OR

COMPARATIVE
 = Equality (EQ)
 < Inferiority (LT)
 > Superiority (GT)

STRINGY
 ? Only used as in (variable ? `text`) yielding 1 if variable contains substring 'text', else 0:
 quoted string constants enclosed by grave/backtick character (code point 96).

[Note that division is not provided. To get round this, alter X/2 to X*0.5, A/B < C to A < B*C and so on. Note
also that the minus sign must be followed by one or more spaces when it means subtraction; if it isn't the
system will presume that next character begins a negative number, such as -355.]

Expressions consist of variable names (such as wingspan) and numeric constants (such as 0.75) linked by
operators. The only precedence recognized is that monadic (unary) operators have higher precedence than
dyadic operators. Thus

 ($! x - 4)

Page 24 of 39

performs the logical negation of x before subtracting 4. If you want the subtraction first,

 $! (x - 4)

would be the correct form. This means that ordering among dyadic operations must be made explicit with
parentheses. You will rarely have to write a complicated BEAGLE expression, but you may have to interpret
some.

BEAGLE lets you intermix logical and numerical values. If an operation needs a logical value but is given a
numeric one, it converts as follows.

 x > 0 => True (1)
 x <= 0 => False (0)

If it wants a numeric value but gets a logical one it uses the following conversions.

 True => 1.0
 False => 0.0

All computations are performed in floating-point double-precision arithmetic.

Page 25 of 39

Appendix C: Case Study Using Aircraft Data :

C.1 Preliminaries
As an illustration, this Appendix describes a complete run-through of the BEAGLE suite on one of the
example datasets provided with the distribution, a data file describing 103 World-War II military aeroplanes.
The main source of this data was Collins Jane's WWII Aircraft (Ethell, 1999). The listing below gives the 16
column names with brief explanations of each.

name name of aircraft

engines number of engines

fuselage length in metres

headroom height in metres

wingspan in metres

kg empty weight in kg

kgladen laden weight in kg

loaddiff difference between loaded & empty (kg)

topspeed maximum speed in k/h

ceiling maximum altitude in metres

maxrange maximum range in km

cannons number of cannon fitted

fighting whether used as a fighter (0/1)

bombing whether used as a bomber (0/1)

carrying whether used as a transport plane (0/1)

country nation of origin

N.B. Some aircraft were used in multiple roles, including roles such as reconnaissance which aren't noted
here, and some changed role over time, e.g. fighter to (light) bomber. I have tried to indicate (with fighting,
bombing & carrying) roles ascribed to each aircraft for the model whose specifications are recorded. Experts
might disagree. (This still leaves a number of definite fighter-bombers.)

This data can be found in \beagling\datasets\aircraft.dat. The header line and the first and last data lines of
this file are reproduced below to give an idea of its format. (These three lines appear as more than three
owing to the restricted margins of this document.)

name engines fuselage headroom wingspan kg kgladen loaddiff

 topspeed ceiling maxrange cannons fighting bombing

 carrying country

Boomerang_CA_12 1 7.78 3.51 11.06 2474 3450 976 476 8845 1496 2

 1 0 0 oz

[....]

Vought_F4U1D 1 10.17 4.6 12.47 3947 5465 1518 684 11285 1633 0 1

 0 0 us

The first thing to do in such an exercise is to choose a target, i.e. decide on a classification scheme. Often this
is obvious, but with this data there are several possibilities. For example, we might train the system to
classify these aircraft by country of origin. To do that would require choosing country as the value for the
targval parameter. However, in this instance I have decided that the system should attempt to learn a
ruleset for picking out fighters. To do so, I prepared the parameter file listed below. For ease of reference,
line numbers have been inserted at the left of each line, though these are not part of the actual file, which
can be found at c:\beagling\parapath\aircraft.txt.

1 ## beagle testing on ww2 military aircraft :

2 jobname aircraft

3 maindat c:\beagling\datasets\aircraft.dat

4 datfrac 0.75

5 outpath c:\beagling\takeoff\

6 randseed 3433

7 ##targval bombing

8 ##skipvars fighting

Page 26 of 39

9 targval (fighting > bombing)

10 skipvars carrying

11 idfield name

12 brevity 1

13 proglang py

Here the target appears on line 9. I have left in lines 7 and 8, which are commented out, so won't have any
effect on the programs, to show that this file has been modified from one which used bombing as the target
variable -- and also specified that the variable fighting shouldn't be allowed in generated rules, to avoid what
might be viewed as cheating, hence "##skipvars fighting" on line 8. (There are some fighter-bombers in the
data, so fighting and bombing are not perfect inverses, but it seemed better not to allow the system to use a
variable so clearly related to the outcome being predicted.)

In fact the target expression on line 9 (fighting > bombing) will only be true for what might be called "pure"
fighters, aeroplanes only used as fighters, not bombers. Since both variables in the target expression,
fighting & bombing, will be excluded from HERB's generation process, it is not necessary to have a line such
as

skipvars bombing

but I have inserted

skipvars carrying

at line 10 to prevent the system from using knowledge about whether the aircraft is used as a transport
plane in its classification of fighters.

Line 2 gives a jobname, aircraft, to this task. This will be used as the core in the names of the various files
that the system writes: it is BEAGLE's normal way of showing which files are related.

Line 3 specifies the data file containing the examples to be investigated.

Line 4 instructs the SEED program that 75% of the instances in the data should be placed in the training file,
which will be called aircraft_dat1.dat since no traindat parameter has been specified, leaving 25% to go into
the test file (called aircraft_dat2.dat, since no testdat parameter has been specified either).

Line 5 specifies an output folder (c:\beagling\takeoff\). This ensures that all the output files will be held in
the same place, which is usually a good idea.

Line 6 (randseed 3433) ensures that SEED and HERB will set Python's pseudorandom number generator to a
particular starting point. This ensures that the whole exercise is repeatable. You should get exactly the same
results if you use this as a trial on your computer, and I won't have to start again from scratch if I happen to
delete some output that I later decide should have been included in this guide!

C.2 Running SEED

It is typical, as in this case, to start a BEAGLE run, by executing the seed.py program. If you double-click on
seed.py in the \beagling\p3\ folder and type "aircraft" to specify the parameter file, you should see
something rather like the screen shot below. Lines 1-6 of the parameter file, shown in section C.1, are in fact
all that are needed for seed.py.

Page 27 of 39

This reads the 103 cases in c:\beagling\datasets\aircraft.dat and puts 77 cases into aircraft_dat1.dat and 23
into aircraft_dat2.dat, both in the folder c:\beagling\takeoff\.

The header line and the first and last 2 lines of aircraft_dat2.dat are listed below.

name engines fuselage headroom wingspan kg kgladen loaddiff

 topspeed ceiling maxrange cannons fighting bombing

 carrying country

Boomerang_CA_12 1 7.78 3.51 11.06 2474 3450 976 476 8845 1496 2

 1 0 0 oz

Fiat_BR20_Cicogna 2 16.78 4.75 21.56 6700 10450 3750 430 6750 2000 0

 0 1 0 italy

[....]

Martin_Baltimore_III 2 14.79 5.41 18.69 6900 10442 3542 486 7320

 1705 0 0 1 0 us

NorthAmerican_Mustang_P51D 1 9.82 4.17 11.3 3232 5266 2034 703 12780

 2092 0 1 0 0 us

C.3 Running HERB

The screen shot below shows initial HERB output, under Windows 10, just after running herb.py and typing
"aircraft" in reply to the parameter file request, but before pressing the Enter key.

Page 28 of 39

After pressing Enter, 8 cycles of on-screen output rather like the extract below will appear.

233 [0.35714285714285715, -5.5]

889 [0.39285714285714285, -4.0]

1106 [0.42857142857142855, -7.5]

1107 [0.42857142857142855, -6.5]

1850 [0.42857142857142855, -6.0]

1868 [0.4642857142857143, -9.0]

1874 [0.4642857142857143, -8.0]

1909 [0.5, -4.5]

2074 [0.5357142857142857, -12.5]

3070 [0.5357142857142857, -8.5]

3455 [0.5357142857142857, -8.0]

4229 [0.5357142857142857, -7.0]

4470 [0.5357142857142857, -6.5]

4718 [0.5714285714285714, -8.0]

4753 [0.5714285714285714, -7.5]

5642 [0.5714285714285714, -7.0]

6769 [0.6071428571428571, -10.5]

7112 [0.6428571428571429, -8.5]

8516 [0.6428571428571429, -8.0]

12450 [0.6785714285714286, -11.0]

13416 [0.6785714285714286, -10.0]

14642 [0.6785714285714286, -5.0]

15204 [0.7142857142857143, -6.0]

15267 [0.75, -8.0]

15943 [0.7857142857142857, -10.0]

c:\beagling\takeoff\aircraft_dat1.dat

Wed Aug 10 14:06:10 2016

tabular

77 16

(fighting > bombing)

['0', '1']

[0.5358983848622454, 0.4641016151377546]

$

(19.95 & (wingspan > 13.0871497))

(cannons < (cannons < ((((country ? `ussr`) * kgladen) - ((country ? `japan`) ;

Page 29 of 39

engines)) + engines)))

$

00 [1, 23]

01 [2, 0]

10 [12, 5]

11 [25, 0]

[0.7857142857142857, -10.0]

$

2 cycles done.

233 [0.25925925925925924, -4.0]

491 [0.25925925925925924, -3.5]

569 [0.25925925925925924, -2.0]

603 [0.3333333333333333, -5.0]

797 [0.5185185185185185, -6.0]

1180 [0.5555555555555556, -8.0]

1285 [0.5555555555555556, -7.5]

3064 [0.5925925925925926, -10.0]

3589 [0.6296296296296297, -6.0]

3950 [0.6296296296296297, -4.0]

7197 [0.6666666666666666, -8.5]

7988 [0.6666666666666666, -7.5]

9213 [0.6666666666666666, -5.0]

10220 [0.7037037037037037, -7.0]

10904 [0.7037037037037037, -4.0]

3 cycles done.

This illustrates the second and third evolutionary cycle. Lines such as

15943 [0.7857142857142857, -10.0]

appear each time a new highest-scoring ruleset is found during each cycle. This line can be interpreted as
follows: after 15943 trials (i.e. 15943 new rulesets created in the current cycle) a new best ruleset was found
with a score of 0.7857142857142857 (Goodman & Kruskal's lambda) and an average rule length of 10
elements. This rule-size measure is included as second element of the fitness score because parameter
brevity was set to 1.

Because this was a better score than the best rule from the previous cycle (cycle 1) the ruleset itself is
printed as well. (A better and shorter ruleset was discovered in a later cycle, so I won't attempt to interpret
this one.) Cycle 3 ended with the line

10904 [0.7037037037037037, -4.0]

indicating that the best rule in that cycle was created on trial 10904, with a score of 0.7037037037037037
and a mean length of 4 elements. This didn't improve on the score reached in cycle 2, so the rule isn't
displayed.

A screen shot showing the ending of this particular HERB run, which comprised 8 subsampling cycles, is
shown below. This shows the overall highest-scoring ruleset, written into file aircraft.rule.txt. You should
expect to view something similar if using the same dataset and parameter file.

Page 30 of 39

This output ruleset is reproduced below.

training data : c:\beagling\takeoff\aircraft_dat1.dat

creation date : Wed Aug 10 14:08:11 2016

rule mode : tabular

77 16

(fighting > bombing)

['0', '1']

[0.5358983848622454, 0.4641016151377546]

$

$! $! ((cannons * (country ? `germany`)) ; (name ? `awa`))

(13.5217427 - wingspan)

$

00 [38, 1]

01 [4, 23]

10 [1, 4]

11 [1, 5]

[0.7878787878787878, -6.0]

$

It contains a pair of independent rules, the first of which begins with 2 logical negation operators. In logic, a
double negation is redundant, so it might be expected that HERB's rule-tidying procedure would have
eliminated this redundancy. In this example, the double negation is indeed redundant, because the
subexpression it operates upon yields a logical value. However, given the way that BEAGLE mixes numeric
and logical values, double negatives cannot in general be eliminated without exploring the rule tree rather
extensively, so this particular simplification has not (so far) been incorporated into BEAGLE's rather
elementary rule-tidying functions.

Ignoring the double negation, which here won't affect the result, this first rule performs an Exclusive Or (';')
between the two subexpressions below.

 ((cannons * (country ? `germany`))

Page 31 of 39

 (name ? `awa`)

The second will be true if the aircraft name contains the substring "awa", which in practice means it was
manufactured by Kawanishi or Kawasaki. The first rule multiplies the number of cannons (always a number
between 0 and 6 in this data) by the truth value (0 or 1) of the test whether the country of origin is
"germany". This component will be true only for German aircraft that have cannons (not just machine-guns).
Thus the whole rule will be true of aircraft that are either German with cannons or have "awa" in their
names but not both. (Both, we know from history, didn't ever happen.)

The second rule

 (13.5217427 - wingspan)

is simpler; and illustrates how HERB deals with numeric expressions when in "tabular" mode. In tabular
mode a subrule is expected to be true or false: if an expression yields a numeric value, it will be treated as 0
(false) if it is zero or negative and treated as 1 (true) if it is greater than zero. So in this context this rule will
have the same effect as

 (13.5217427 > wingspan)

being considered true for those (relatively narrow) aeroplanes with wingspan less than 13.5217427 metres,
false otherwise.

In the training file there were 39 cases when both rules were false, only 1 being a "pure" fighter and 38 being
aircraft used in other roles such as bombing, transport or possibly as fighter-bombers. There were only 6
cases when both rules were true, five of which were "pure" fighters.

An extract from HERB's other output file (aircraft_list.txt), which summarizes how the rules performed
during the subsampling cycles, is reproduced below.

dateline Wed Aug 10 14:06:10 2016

progname C:\beagling\p3\herb.py

id C:\beagling\parapath\aircraft.txt

traindat c:\beagling\takeoff\aircraft_dat1.dat

targval (fighting > bombing)

====subsampling trial :

rank strength case name pred:true cellsize predvals

 1 0.95 53 Short_Stirling_III 0 + 0 25 0.97 0.03

 2 0.95 36 Ilyushin_II4 0 + 0 25 0.97 0.03

 3 0.91 75 Republic_P47D 0 - 1 35 0.96 0.04

 4 0.91 64 Douglas_Dakota_C47A 0 + 0 35 0.96 0.04

 5 0.91 18 Mitsubishi_Ki46 0 + 0 35 0.96 0.04

 6 0.91 68 Grumman_TBF1 0 + 0 33 0.95 0.05

 7 0.91 63 Douglas_A20G 0 + 0 33 0.95 0.05

 8 0.91 46 Fairey_Swordfish_I 0 + 0 33 0.95 0.05

 9 0.91 44 Fairey_Battle_II 0 + 0 33 0.95 0.05

 10 0.91 42 Bristol_Blenheim_IV 0 + 0 33 0.95 0.05

 11 0.91 29 Junkers_Ju88 0 + 0 33 0.95 0.05

 12 0.87 72 Martin_B26B 0 + 0 36 0.93 0.07

 13 0.87 59 Consolidated_B24J 0 + 0 36 0.93 0.07

 14 0.87 38 Petlyakov_Pe2 0 + 0 36 0.93 0.07

 15 0.87 27 Heinkel_He219 0 - 1 36 0.93 0.07

[.... items 16 to 60 omitted to save space]

 61 0.54 58 Brewster_Buffalo_F2A 1 + 1 22 0.23 0.77

Page 32 of 39

 62 0.54 13 Mitsubishi_A6M_Zero 1 + 1 22 0.23 0.77

 63 0.42 40 Tupolev_SB2 0 + 0 4 0.71 0.29

 64 0.39 24 FockeWulf_Fw190D 1 + 1 5 0.30 0.70

 65 0.35 26 Heinkel_He162 1 + 1 8 0.32 0.68

 66 0.32 43 DeHavilland_Mosquito 1 - 0 1 0.34 0.66

 67 0.19 74 Northrop_P61B 1 - 0 6 0.40 0.60

 68 0.19 50 Hawker_Typhoon_IB 1 + 1 6 0.40 0.60

 69 0.19 32 Messerschmitt_Me410 1 + 1 6 0.40 0.60

 70 0.10 35 Ilyushin_II2_Shturmo 1 - 0 10 0.45 0.55

 71 0.10 31 Messerschmitt_Bf110 1 + 1 10 0.45 0.55

 72 0.07 11 Kawanishi_N1K1 0 - 1 0 0.54 0.46

++-+++++++++++-++++++++--+++++++++++++++++-++++-+-+++++++++++++++--++-+-

Confusion matrix :

Truecat = 0 1

Predcat : 0 33 3

Predcat : 1 8 28

Kappa value = 0.693

Precision (%) by category :

0 91.6667

1 77.7778

Recall (%) by category :

0 80.4878

1 90.3226

cases = 72

cases with unseen category labels = 0

hits = 61

percent hits = 84.72

Hedges's g (z-gap) between strengths of right & wrong answers = 0.744

Resultant rule from all training cases :

c:\beagling\takeoff\aircraft_dat1.dat

Wed Aug 10 14:06:10 2016

tabular

77 16

(fighting > bombing)

['0', '1']

[0.5358983848622454, 0.4641016151377546]

$

$! $! ((cannons * (country ? `germany`)) ; (name ? `awa`))

(13.5217427 - wingspan)

$

00 [38, 1]

01 [4, 23]

10 [1, 4]

11 [1, 5]

[0.7878787878787878, -6.0]

$

Parameter settings :

[.... parameter dump omitted to save space]

A point to note about this listing is that it does not record the application of the final best rule itself (even
though that rule is listed, mainly as a convenience), but of the highest-scoring rule in each subsampling cycle
when applied to the subsample of held-out cases. Thus the performance figures, such as the success rate of
84.72%, are effectively predictions of how the best overall rule is expected to perform on data from the
same source. The idea of this output file is to provide evidence for judging the likely practical value of the
generated ruleset.

Page 33 of 39

C.4 Running LEAF

Running leaf.py with the same parameter file should produce output resembling the screen shot below.

LEAF applies the ruleset created by HERB (aircraft_rule.txt) to the 26 holdout cases written by SEED into the
test file (aircraft_dat2.dat). Its main output file (aircraft_test.txt in this example) is listed below.

dateline Wed Aug 10 17:21:00 2016

progname C:\beagling\p3\leaf.py

id C:\beagling\parapath\aircraft.txt

testdat c:\beagling\takeoff\aircraft_dat2.dat

targval (fighting > bombing)

====holdout trial :

rank strength case name pred:true cellsize predvals

 1 0.92 24 Martin_Baltimore_III 0 + 0 39 0.96 0.04

 2 0.92 23 Douglas_A26B 0 + 0 39 0.96 0.04

 3 0.92 22 Boeing_B29 0 + 0 39 0.96 0.04

 4 0.92 20 HandleyPage_Halifax_ 0 + 0 39 0.96 0.04

 5 0.92 18 Bristol_Beaufort 0 + 0 39 0.96 0.04

 6 0.92 17 Bristol_Beaufighter_ 0 - 1 39 0.96 0.04

 7 0.92 16 ArmstrongWhitworth_W 0 + 0 39 0.96 0.04

 8 0.92 14 Tupolev_Tu2 0 + 0 39 0.96 0.04

 9 0.92 9 Junkers_Ju87_Stuka 0 + 0 39 0.96 0.04

 10 0.92 8 Junkers_Ju53 0 + 0 39 0.96 0.04

 11 0.92 1 Fiat_BR20_Cicogna 0 + 0 39 0.96 0.04

 12 0.62 25 NorthAmerican_Mustan 1 + 1 27 0.19 0.81

 13 0.62 21 Bell_P39Q 1 + 1 27 0.19 0.81

 14 0.62 19 Gloster_Meteor_I 1 + 1 27 0.19 0.81

 15 0.62 15 Yakolev_Yak3 1 + 1 27 0.19 0.81

 16 0.62 13 Polikarpov_I16 1 + 1 27 0.19 0.81

 17 0.62 12 Mikoyan_Gurevich_MiG 1 + 1 27 0.19 0.81

 18 0.62 11 Lavochkin_La5 1 + 1 27 0.19 0.81

 19 0.62 5 Nakajima_Ki44 1 + 1 27 0.19 0.81

 20 0.62 4 Nakajima_Ki43 1 + 1 27 0.19 0.81

Page 34 of 39

 21 0.62 2 Macchi_C202_Folgore 1 + 1 27 0.19 0.81

 22 0.62 0 Boomerang_CA_12 1 + 1 27 0.19 0.81

 23 0.47 10 Messerschmitt_163_Ko 1 + 1 6 0.26 0.74

 24 0.47 6 FockeWulf_Fw190 1 - 0 6 0.26 0.74

 25 0.47 3 Kawasaki_Ki61 1 + 1 6 0.26 0.74

 26 0.39 7 FockeWulf_Fw202C_Con 1 - 0 5 0.30 0.70

+++++-+++++++++++++++++-+-

Confusion matrix :

Truecat = 0 1

Predcat : 0 10 1

Predcat : 1 2 13

Kappa value = 0.7661

Precision (%) by category :

0 90.9091

1 86.6667

Recall (%) by category :

0 83.3333

1 92.8571

cases = 26

cases with unseen category labels = 0

hits = 23

percent hits = 88.46

Hedges's g (z-gap) between strengths of right & wrong answers = 0.7886

Resultant rule from all training cases :

(Rule size = 12)

training data : c:\beagling\takeoff\aircraft_dat1.dat

creation date : Wed Aug 10 14:08:11 2016

tabular

26 16

(fighting > bombing)

['0', '1']

[0.5358983848622454, 0.4641016151377546]

$

$! $! ((cannons * (country ? `germany`)) ; (name ? `awa`))

(13.5217427 - wingspan)

$

00 [38, 1]

01 [4, 23]

10 [1, 4]

11 [1, 5]

[0.7878787878787878, -6.0]

$

[.... parameter dump omitted to save space]

This output is in a similar format to that of the aircraft_list.txt file produced by HERB, so they can easily be
compared. On these genuinely unseen cases LEAF gets 23 out of 26 correct (88.46% success) which is slightly
better than the success rate projected from HERB's subsampling.

One of its mistakes was assigning the Bristol Beaufighter, a 2-engined fighter developed from a bomber (the
Bristol Beaufort), with a broad wingspan of 17.63 metres, to the class of non-fighters. Another was
classifying the Focke-Wulf Fw190, a fighter-bomber, as a pure fighter. The third mistake was classifying the
Focke-Wulf Condor as a pure fighter: it was a long-range German bomber with cannons, so it fell into the
sparsely populated '10' row of the signature table.

C5. Running PLUM

Running plum.py with this dataset will produce an output file containing an executable translation of HERB's
ruleset (aircraft_rule.txt), in Python3 since the value of proglang in the parameter file is "py". A sample

Page 35 of 39

screen shot is shown below.

The program output file (aircraft_prog.py) is listed below.

Using BEAGLE Py template, version of 28/07/2016 :

rule written by plum.py ;

derived from training data : c:\beagling\takeoff\aircraft_dat1.dat;

generated on creation date : Wed Aug 10 14:08:11 2016;

dumped on Wed Aug 10 17:53:34 2016.

beag_gold = 5.0 ** 0.5 * 0.5 + 0.5 ## global

import math ## math library called upon

helper functions :

def beag_bool (v):

 ## ensures same bool/math treatment as in Beagle :

 return (v > 0) + 0

def beag_exor (v1,v2):

 ## exclusive or, as in Beagle :

 return ((v1>0) != (v2>0))

def beag_root(v):

 ## safe square root :

 if v >= 0.0:

 return math.sqrt(v)

 else:

 return -math.sqrt(abs(v))

def beag_slog (v):

 ## safe natural logarithm :

 if v < 0:

 return -math.log1p(abs(v))

 else:

 return math.log1p(v)

def beag_stabprep ():

 ## sets up fallout table :

Page 36 of 39

 stab = {}

 stab['00'] = [38, 1]

 stab['01'] = [4, 23]

 stab['10'] = [1, 4]

 stab['11'] = [1, 5]

 ## unpacks stab lines.

 return (stab)

 ## stabprep ends.

def beag_decrule (vals,stab):

 ## input vals should be an object with appropriate attribute names.

 ## target : (fighting > bombing)

 ## rule mode is tabular.

 bins = ['0','1'] ## omit if demonic

 catlist = ['0', '1']

 priorvec = [0.5358983848622454, 0.4641016151377546]

 subrules = 2

 rule = [0] * 2

 ## compute rule values :

 rule[0] = ((beag_exor((vals.cannons * ("germany" in vals.country)),("awa" in

vals.name))<= 0)<= 0)

 rule[1] = (13.5217427 - vals.wingspan)

 p = 0 ; b = []

 while (p < subrules):

 v = (rule[p] > 0) + 0 ## ensure numeric, omit if demonic

 b.append(bins[v]) ## boolean string, omit if demonic

 p = p + 1 ## early-r, late-py

 b = ''.join(b) ## omit if demonic

 ## retrieve cell frequencies :

 frex = stab[b]

 cellsize = sum(frex)

 ## attenuate frex :

 cats = len(priorvec)

 slug = beag_gold / cats

 modfrex = [slug + f for f in frex]

 ## defer to Reverend Bayes :

 postvec = [priorvec[j] * modfrex[j] for j in range(cats)]

 psum = sum(postvec)

 postvec = [p / psum for p in postvec] ## rescale to total 1.

 m = max(postvec) ; pc = postvec.index(m)

 predcat = catlist[pc]

 return ([b,predcat,frex,postvec])

decision rule ends.

ending.

To make use of this software in a Python3 program, you would need to call the function beag_stabprep()
once, to set up the signature table, as in

 sigtab = beag_stabprep()

and then call beag_decrule(,) for each instance to be classified, as in

 reslist = beag_decrule(vals,sigtab)

where vals should be a Python object with attributes cannons, country, name and wingspan. In this case, the
attributes cannons and wingspan ought to be numeric and the values of attributes country and name should

Page 37 of 39

be strings, otherwise Python will raise an error. In other words this software assumes that the attributes
used in the rules have the same types as in the training data.

C6. Running LEAFLET

Running leaflet.py is like running leaf.py except that it reads the translated ruleset written by plum.py
(aircraft_prog.py in this case) instead of the BEAGLE ruleset produced by herb.py (aircraft_rule.txt in this
case). It doesn't apply when R is the selected programming language. The main output file (aircraft_prop.txt
in this case) should be identical to that produced by LEAF, except that the ruleset will be listed in its Python
form. If the results differ between LEAF and LEAFLET something has gone wrong! With this example,
reassuringly, they didn't differ, so the output isn't reproduced here. Comparing the two listing files is left as
an exercise for the reader.

Page 38 of 39

Appendix D: Sample Datasets Provided

These are readable into R using read.delim() with default settings, i.e. tab-delimited with header line; meant
to be suitable for classification &/or regression testing. The .dat files contain data; .txt files with same name
give details.

Aircraft [103, 11+5, at least 4 potential classification variables]
 World-War-II military aeroplanes, as from Collins/Jane's WWII Aircraft (1999).

Banknote [206, 6+2, 2 cats]
 Forged versus genuine Swiss banknotes (Flury & Riedwyl, 1988).

Cardiac [113, 19+1, 2 cats]
 Sample data from Afifi & Azen (1979) on heart-attack patients in L.A.

Digidat [1024, 11+2, 10 cats]
 Recreation of faulty light-emitting diode display data, as in example by Breiman et al. (1984).

Dogs [77, 10+2, 5 cats]
 Mandible measurements of living & prehistoric Thai canines, as from Manly (1994).

Echo [201, 60+1, 2 cats]
 Gorman & Sejnowski's (1988) Sonar dataset from UCI ML repository.
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

Elements [104, 14, various]
 Information on chemical elements (Wikipedia periodic table).

Glasses [214, 9+1, 7 cats]
 Evett & Spiehler's (1988) forensic glass identification example data.
https://archive.ics.uci.edu/ml/datasets/Glass+Identification

Iris [150, 4+2, 3 cats]
 Fisher's (1936) Iris data. (Originator: Anderson, E. (1935). The Irises of the Gaspe peninsula.)
http://en.wikipedia.org/wiki/Iris_flower_data_set

Natflags [200, 29+1, many possible choices of x & y vars]
 Information about nations & their flags.

Rand [256, 15+1, no genuine cats (2 with "coin" as a test?)]
 Pure random data (as null case) to test overfitting avoidance.

Roos [101, 19+1, 3 cats]
 Kangaroo skull measurements (Andrews & Herzberg, 1985).

Seed [210, 7+1, 3 cats]
 Wheat seed data from Poland. Three varieties: Kama, Rosa & Canadian.
 Seven measurements derived from soft x-rays.
https://archive.ics.uci.edu/ml/datasets/seeds

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
http://en.wikipedia.org/wiki/Iris_flower_data_set
https://archive.ics.uci.edu/ml/datasets/seeds

Page 39 of 39

Vole [86, 7+1, 2 cats]
 Measurements on 2 types of vole, from Flury & Riedwyl (1988).

Wine [178, 13+1, 3 cats]
 Chemical measurements as predictors of type of Italian wine. Source: Forina et al.
https://archive.ics.uci.edu/ml/datasets/Wine

Zoobase [101, 16+2, 7 cats]
 Zoological classification data as from Forsyth (1990).

https://archive.ics.uci.edu/ml/datasets/Wine

